Astro 210 Lecture 39 December 3, 2010

Announcements

 \vdash

- HW 10 due now No homework next week! Thanks and congratulations.
- Final Exam: Monday Dec 13, 7–10 pm, here as usual www: info online
- ICES course evaluation available online *please* fill it out–I *do* read & use results
- check Compass GradeBook scores for accuracy

Last time: our Milky Way Galaxy

- Q: basic shape? where are we? how do we know?
- Q: rotation curve—what is it? what does it look like? What does it mean?

Milky Way Galaxy and our Central Black Hole

Does everything orbit the supermassive black hole at the center? \rightarrow yes, but not because of the black hole

total Galaxy mass: $M_{\text{MW}} \gtrsim 10^{11} M_{\odot}$ central black hole: $M_{\text{BH}} = 4 \times 10^6 M_{\odot} \ll M_{\text{MW}}$ \Rightarrow black hole is *tiny* fraction of Galactic mass

In fact: high density of *stars* near the center stellar mass $M_{\star}(r)$ inside radius r:

 $M_{\star}(r) > M_{\mathsf{BH}}$ for $r \gtrsim 2$ pc!

 \rightarrow BH only dominates gravity of innermost 2 pc we are at $r_{\odot} = 8$ kpc = 8000 pc!

So: stars *do* orbit the Galaxy's center and the black hole does live there but its gravity is not what keeps us in orbit

Galaxies: Beyond the Milky Way

Edwin Hubble (1920's): galaxies fill universe typical separation $\sim 10^6$ pc = 1 Mpc (megaparsec) most distant 1000's of Mpc \Rightarrow galaxies are huge masses of stars

Galaxies sizes range large (like MW) to small "dwarf"

different structure ("morphology") & star, gas contents

spiral galaxies

- morphology: disk+bulge
- stars in both disk and bulge
- \bullet gas, dust evident in disk \rightarrow ongoing star formation

www: barred spiral zoom: star formation

elliptical galaxies

- morphology: elongated sphere, no disk!
- stars in spherical/spheriodal distribution
- no/very little gas, dust!
 - \rightarrow no ongoing star formation—no ingredients!

irregular galaxies

- morphology: no clear, simple shape/symmetry
- stars, gas, and dust all present
- www: HST merging galaxies

4

Milky Way one of many galaxies-a typical spiral

Revolution Re-Revisited

Copernican Revolution I (17th Century):

Earth is one typical planet among many not center of solar system

Copernican Revolution II (earth 20th Century):

Sun is one typical star among many not center of Milky Way Galaxy

Copernican Revolution III (1920's):

Milky Way is one typical galaxy among many Universe much larger than previously thought ... stay tuned for more...

Motions Within Galaxies

galaxies have (huge) masses \rightarrow each star feels gravity of all other stars \rightarrow all stars are in motion

in spiral galaxies, disk stars in circular orbits around center in elliptical galaxies, stars in elliptical-like orbits around center *Q: but then how does the galaxy have a spherical shape?*

can measure rotation curves for galaxies:

 \rightarrow in fact, it's easier than measuring our

own Galactic rot curve

Ω

Q: what's a rotation curve? what does ours look like? what does it tell us?

iClicker Poll: Dark Matter in Other Galaxies

Our Galaxy has a "flat" rotation curve \rightarrow dark matter But what about other galaxies?

Vote your concience!

How common are flat rotation curves and thus dark matter?

- A dark matter found in < 1% of galaxies
- Β
- dark matter found in < 10% of galaxies
- С
- dark matter found in < 50% of galaxies
- dark matter found in > 90% of galaxies

If it isn't dark, it doesn't matter!

⇒All galaxies have dark matter

Dark matter "halo" much larger than visible galaxy diagram

and **most** of every galaxy's mass is in the form of dark matter!

Dark Matter fills Universe!

Structure of the Universe

Galaxy distribution in space:

- small scales: clumpy
- large scales: smooth

www: 2dF survey and map

on large scales, Universe is

1. homogeneous:

galaxies fill space with (nearly) uniform density

2. isotropic:

universe looks same in all directions

5 Q: What's a U that is isotropic but not homogeneous? Q: What's a U that is homogeneous but not isotropic?

Motions of Galaxies

measure velocity respect to us i.e., in galaxy spectra, look for shifts in lines

Results:

(almost) all galaxies show redshift

all galaxies move away from us!

Hubble (1929): galaxy dist, speed related $v \propto d$, or

$$v = Hd$$

(1)

 $\stackrel{\text{\tiny L}}{\mapsto}$ \rightarrow Hubble's law