$$
\begin{gathered}
\text { Astro } 210 \\
\text { Lecture } 4 \\
\text { Aug 30, } 2010
\end{gathered}
$$

Announcements

- HW1 available; due in class Friday
- register your iClicker; link on course webpage

Last time: the naked-eye Moon
on celestial sphere: path is great circle motion is eastward w.r.t stars
phases of the moon: caused by changing Earth viewpoint of the Sun-facing illuminated half of Moon
my suggestion: practice! do the experiment in real life! point to moon, then sun, find Moon-Earth-Sun angle
complete cycle of lunar phases in 29.5 days
$\Rightarrow 3 r d$ fundamental measure of time: month of phases

Eclipses

Lunar Eclipse: moon in earth's shadow diagram: Sun, Earth, Moon
www: lunar eclipses
note: can still see Moon even when totally in Earth's shadow! appears much dimmer, and red

Q: what's going on? why the red color?
note that direct sunlight is totally blocked
so light must be indirect, in fact:
scattered light from earth's atm.
red b / c blue is scattered more strongly, so only red is left
in other words:
glow is from all the sunrises and sunsets on Earth!

Note: Iunar eclipse coming up: Dec 21
watch it over break, impress someone with your ASTR210 skills!
solar eclipse: observer in moon's shadow
Note: Earth larger than Moon
Q: what does this immediately imply for solar eclipses?
since Moon smaller than earth, whole earth cannot be in shadow in fact, only a small region, $\sim 100 \mathrm{mi}$, at a given time "eclipse path"
interesting coincidence: Moon and Sun have almost identical angular size and what's more: Moon's distance changes (not circular orbit) www: moon perigee/apogee comparison
together this means: two kinds of solar eclipses
www: annular eclipse
www: total eclipse
www: looking back on Earth's shadow
-
Note: there is not a solar or lunar eclipse every month!

iClicker Poll: Eclipses and Lunar Orbit

Eclipses do not occur most months

What does this imply about the Moon's 3-D motion around Earth?

A Moon-Earth orbit not confined to a plane

B Moon-Earth orbit is planar, but not in ecliptic (=Earth-Sun orbit plane)

C Moon-Earth orbit is planar and is in ecliptic, but Moon orbit is in opposite direction as Earth-Sun orbit
G
D trick question! eclipse does occur monthly
\rightarrow that's the new moon
if Moon's orbit plane around Earth were same as Earth's around the Sun (i.e., the ecliptic) then would have eclipses monthly
the fact that we don't means that the two orbits are not coplanar!

* moon's orbit plane slightly tilted w.r.t. ecliptic so moon is typically below or above ecliptic

iClicker Poll: Eclipse Frequency

Earth-Moon orbit plane not coplanar with Earth-Sun orbit (=ecliptic)

Therefore, how many times a year should be have eclipses?

A 1 eclipse (of either kind) per year

B 2

C 3
v 4
www: eclipse diagram
only eclipse when Moon orbit crosses ecliptic plane happens twice a year \rightarrow "season of eclipses"
geometrically: intersection of planes is a line and intersection of line with closed orbits is 2 points

Any questions?

Planets

Known since ancient times:
Mercury, Venus, Mars, Jupiter, Saturn
Discovered later, with telescopes:
Uranus, Neptune, Pluto
daily motion: westward w.r.t. horizon
i.e., .rise in east, set in west
w.r.t. fixed stars:
always stay close to ecliptic
usually move eastward
www: SOHO LASCO planet movie
but sometimes westward: "retrograde motion"
www: retrograde motion of Mars
so motion not uniform in angular speed
in fact, not uniform even when in "direct" (non-retro) motion

retrograde motion not random in occurrence!

 key patterns observed:- for each planet, retrograde onset is periodic with different periods for different planets
- retrograde occurence correlated with position relative to Sun:

Mercury, Venus	Mars, Jupiter, Saturn (\& others)
always stay close to sun on sky	can move freely along ecliptic
never seen opposite Sun	can be opposite sun
retro when in conjunction	retro when in opposition
(i.e., when closest to Sun on sky)	(i.e., opposite Sun on sky)

These Patterns Cry Out For Explanation

you may have noticed-I've heaped a lot of facts on you.
Do you have to memorize them? Do I have them memorized?
No! There's a simpler way of remembering.
\rightarrow build a model of the solar system's geometry and dynamics organize, explain all of this data!

Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.
—Henri Poincaré

Crucial point:
when making model for motions of planets
, have to explain all observed features;
\forall turns out the retrograde motion, in all its detail, gave people the hardest time...

Building a Scientific Model

Scientific Models must:

- explain observations
- predict future observations

The principle of science, the definition, almost, is the following: The test of all knowledge is observation. Experiment is the sole judge of scientific "truth."

The first principle is that you must not fool yourself-and you are the easiest person to fool.
—Richard Feynman

Cosmological Models: Naked-Eye Sky

any viable model must explain all observations including retrograde motion of planets
models change:

- when predictions fail
- when new observations require new explanations
model refined \rightarrow theory
theory is end product
not mere speculation or offhand/wacky idea

Greek Cosmology

Pythagoreans

- earth: spherical shape
- stars and planets on spheres
(Note aesthetic preference for spheres: symmetry!
\rightarrow pure geometry

Aristotle (284-322 BC)
Two realms, where different physical principles apply

Realm	Heavenly [incorruptible]	Terrestrial [corruptible]
Iocation:	above moon	below moon
natural motion:	uniform circular rotation	earth, air, water, fire: toward natural place in universe earth lowest, then water, air, fire
status:	perfect, unchanging	imperfect, changeable

earth stationary, and at center of universe

experimental evidence

Earth is round:

- shadow of earth during lunar eclipse
- altitude of Polaris: varies with latitude

Q: where is Polaris highest? lowest?
Seen from Chambana, does Polaris' height change with seasons?

A	yes
B	no

- observations of Eratosthenes (~276-195 BC)
diagram: Syene at equator, Alexandria 7° away, R, d
$7^{\circ} / 360^{\circ}=d / R, d \sim 800 \mathrm{~km}$
宁 $\Rightarrow R \sim 6700 \mathrm{~km}$: close!

