Astro 210 Lecture 41 December 8, 2010

Announcements

 Final Exam: next Monday Dec 13, 7–10 pm, here as usual www: info online

Last time: expanding universe

two objects with distance r at present time t₀ will at time t have distance d(t) = a(t) r so a(t) encodes history of cosmic expansion Q: present value a(t₀)? what is a for t < t₀?

• expansion rate $H = \dot{a}/a$

Followup to question from last time:
Hubble law: all galaxies move w.r.t. all others
→ in any one frame, only *one* galaxy at rest all others recede according to Hubble law
so: compare views from three evenly spaced points

• cosmic equation of motion: Friedmann eq

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\kappa}{a^2} \tag{1}$$

- matter-only universe disagrees with data (too young!)
- Q: given cosmic expansion, what's U like in the past?

Expanding Universe: The Past

In the past, Galaxies closer together: a(t) < 1U. was **denser**, also *hotter*

Universe began in very hot dense state: ⇒ big bang

expanded, cooled to present state

Where did the Big Bang Happen? ω Q: Already know enough—where?

Where Was the Big Bang?

Universe is homogeneous & isotropic: no special points! \rightarrow big bang has no center \rightarrow happened everywhere

The Future

Q: given that U expanding today what are possible fates in future?

The Fate of the Universe

The story until ~8 years ago fate of universe is competition: *outward inertia of expansion* vs *inward gravity* ...just like *pop fly* (ball hit upward)

currently: U expanding like ball (pop fly) launched upward

future possibilities:

- gravity > intertia: recollapse like $v < v_{esc}$ -ball falls back
- gravity < intertia: expand forever
 like v > v_{esc}-ball (rocket!?) leaves earth!
- gravity = intertia: expand forever but $H \to 0$ at $t \to \infty$ like $v = v_{esc}$ -ballt escapes but $v \to 0$ at $t \to \infty$

С

Last iClicker Poll! Cosmic Acceleration/Deceleration

How should the cosmic expansion *rate* change w/ time?

- A increase: U. accelerates, $d^2a/dt^2 > 0$
- B decrease: U. decelerates, $d^2a/dt^2 < 0$
- C constant: U. coasts, $d^2a/dt^2 = 0$

Since gravity attactive, expect deceleration \rightarrow just like upgoing pop fly

....BUT...

Current data:

Universe is *accelerating* !?!?

What does this mean?

need repulsive force to overcome gravity

only important on cosmo scales

A huge surprise! A huge mystery! What is dark energy? Will it change with time? Perhaps related to very high energy processes (quantum gravity)? Perhaps related to goings-on in very early Universe?

What little we do know:

if dark energy takes simples form

("cosmological constant")

then dark enregy force between particles (galaxies)

is $F_{\mathsf{DE}} \propto r$

Q: what does this imply for fate of U.?

Dark Energy and a Dark Future

dark energy force $F_{\rm DE} \propto r$

 \rightarrow force increases as particles move apart

 \rightarrow more repulsion as galaxies recede

so acceleration only increases with time!

 \rightarrow U. fate is to expand forever!

"the Big Chill"

Taking the Temperature of the Universe

when U. very dense: "good thermal contact" \rightarrow U has temperature

Q: How can we measure *T* of universe?

Measure T from spectrum www: Penzias & Wilson

radiation everywhere cosmic microwave background radiation (CMBR)

universe spectrum is very accurate blackbody *transp: CMB spectrum, errors* × 100

$T = 2.728 \pm 0.004$ K

- if had microwave eyes, sky very bright in radiation from big bang
- 10% of "snow" on TV
- is radiation from big bang

Big Bang Nucleosynthesis

```
Theory
atomic nuclei made of protons p and neutrons n
bound together by nuclear force
at high temperature \rightarrow early times
U so hot, collisions so violent, that nuclei "ionized" into n, p
then U cools until n, p \rightarrow nuclei
```

```
t = 1sec - 3 min: kT = 10^{10} K to 10^{6} K
nuclei "ionized" (n & p only) → "neutral" (combined in nuclei)
24% helium
traces of D, <sup>3</sup>He, <sup>7</sup>Li
76% "leftover" protons (<sup>1</sup>H)
```

Observation measure He in universe: $\rightarrow 24\%$ matches theory!

theory & obs. agree!

 \rightarrow big bang theory works well back to t=1s !

Matter: Big Bang to Now

- 1. Big bang nuke: light elements
- 2. Universe cools, matter clumps stars, Galaxies born
- stars:
 all heavy elements

Solar system has products of

- big bang (H, He, Li)
- low mass stars (ex: C from red Giants)
- high mass stars (ex: O, Fe from supernovae)

14

a cosmic symphony; we are results

another perspective: cosmologists M. Python *"The Galaxy Song" from* The Meaning of Life (1983)

The Very Early Universe

before big bang nuke:

- $T > 10^{10}$ degrees
- very high-energy collisions:

study with particle acclerators

- ▷ Fermilab, Batavia IL (Chicago suburb–go visit!)
- Large Hardonic Collider (LHC), Geneva Switzerland to visit)

www: Fermilab

- www: tunnel
- www: LHC
- www: collision

Inner Space and Outer Space

1. Fermilab and LHC are *microscopes* probing nature on the smallest scales

2. Fermilab and LHA are also *telescopes* probeing conditions of universe at kT = 1 TeV = 10^{12} eV $\rightarrow t = 10^{-12}$ sec

2. Early Universe:
→ "poor man's accelerator"
exotic particles created
perhaps these are dark matter?
weakly interacting massive particles: WIMPs

deep connections between the very small and the very large

Remaining Questions

To name a few:

- what is the dark energy?
- how will the dark energy influence the fate of the Unvierse?
- what is the dark matter?
- how did galaxies form?
- when did the first stars form? the first black holes? what are their observable "fossils" today?
- what happened at t = 0 (singularity)?

