> Astro 210
> Lecture 8
> Sept 10,2010

Announcements

- HW2 due now
- HW3 available, due next Friday
- HW1 graded, scores on Compass, papers back next time
- Iast chance! register your iClicker; link on course webpage
- Bigshot astronomer coming next week:

Iben Distinguished Lecturer: Tony Tyson
lead scientist on top new telescope for 2010-2020 decade!
"Exploring the Dark Side of the Universe"
7pm Wed Sept 15, Foellinger; more info on course page

Last Time: Sir Isaac Weighs In

Newton's Laws of motion
I. inertia Q: just a special case of Newton II?
II. $\vec{F}=m \vec{a} Q$: fortunetelling \& archæology?
III. action-reaction

Q: when/where/to what do Newton's laws of motion apply?

Newtonian Gravitation
Q: magnitude of gravity force between masses m and M with distance r ?
Q : direction of the force?

Newton's laws sweeping in scope!
as stated they, should apply to
any motion of any object of any size, shape, or speed, with any forces acting at any time
in fact: for all of everday life,
and indeed for much of the cosmos and its history,
Newton's laws work fantastically well!
but we will see soon: they are not the last word under very extreme (and very interesting!) conditions
Newton's laws fail...
but to understand the significance of Newton's limitations first need to appreciate his most spectacular success...

Angular Momentum

For point mass, angular momentum defined as

$$
\begin{equation*}
\vec{L}=\vec{r} \times \vec{p}=m \vec{r} \times \vec{v} \tag{1}
\end{equation*}
$$

where \times is vector cross product diagram: perspective: $\vec{r}, \vec{p}, \vec{L}$

What is time change of angular momentum?

$$
\begin{align*}
\frac{d}{d t} \vec{L} & =m \dot{r} \times \vec{v}+m \vec{r} \times \dot{v} \tag{2}\\
& =m \vec{v} \times \vec{v}+m \vec{r} \times \vec{a} \tag{3}\\
& =\vec{r} \times \vec{F}=\vec{\tau} \quad \text { torque } \tag{4}
\end{align*}
$$

angular counterpart of Newton II

- $d \vec{p} / d t=\vec{F}$: net (linear) force changes linear momentum
- $\bullet d \vec{L} / d t=\vec{\tau}$: net twisting force $=$ torque
changes angular momentum

iClicker Poll: Orbits and Angular Momentum I

For an object in a Keplerian (elliptical) orbit around the Sun Consider the directions of angular momentum at perihelion, and aphelion
How do these compare?

A the two vectors are parallel

B the two vectors are antiparallel

C none of the above

Gravity and Angular Momentum

in general:
angular momentum $\vec{L}=m \vec{r} \times \vec{v}$
torque $\vec{\tau}=\vec{r} \times \vec{F}=d \vec{L} / d t$
when force is due to gravity, torque is:

$$
\begin{equation*}
\frac{d}{d t} \vec{L}=\vec{\tau}=-\vec{r} \times G \frac{m M}{r^{3}} \vec{r}=0 \tag{5}
\end{equation*}
$$

so if force is gravity:

- torque is zero! ...and so
- angular momentum is conserved!

の Q: what about gravity force gauranteed that zero?

What Keeps the Earth in Orbit?

circular orbit \rightarrow centripetal accel.
angular speed $d \theta / d t=\omega=2 \pi / P=$ const, $r=$ const
$a=-\omega^{2} r=-v^{2} / r$
diagram: show $\vec{v}, \vec{r}, \vec{a}$

Newton II: acceleration demands net force
but Newton gravity supplies a force!
\rightarrow Newtonian gravity is crucial and necessary ingredient for understanding the dynamics of planetary motion but have to see how the detailed predictions compare with observation

Program:

- assume Newtonian gravity controls planetary motion
- that is, for any planet let $\vec{F}_{\text {net }}=\vec{F}_{\text {Sun-planet }}$
- input this into Newton's laws
- turn mathematical cranks \rightarrow predict orbits
- compare predictions with observation

Solutions: Orbits

For attractive inv. sqare force, oribts are cross sections of cone:
circle, ellipse, parabola, hyperbola, line transp: oribts

Circle eccentricity $e=0$
at each point:
$F=m a=m v_{\mathrm{C}}^{2} / r$
$\Rightarrow G M m / r^{2}=m v_{\mathrm{C}}^{2} / r$
\Rightarrow circular orbits have speed $v_{\mathrm{c}}=\sqrt{\frac{G M}{r}}$

- ex: circular speed 1 AU from Sun
$v_{\mathrm{c}}=3 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Kepler from Newton

Kepler I: Orbits are ellipses
Newton: bound orbits due to gravity are ellipses: check!

Kepler II: Equal areas in equal times

Newton: consider small time interval $d t$
move angle $d \theta=\omega d t$
sweep area
diagram: top view: path, $d \theta, \vec{r}, \vec{v}, \vec{v}_{t}$

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} d \theta=\frac{1}{2} r^{2} \omega d t \tag{6}
\end{equation*}
$$

but $\omega=v_{\theta} / r$, where $\overrightarrow{v_{\theta}} \perp \vec{r}$
\Rightarrow swept area

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} \frac{v_{\theta}}{r} d t=\frac{1}{2} r v_{\theta} d t \tag{7}
\end{equation*}
$$

\Rightarrow swept area

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} \frac{v_{\theta}}{r} d t=\frac{1}{2} r v_{\theta} d t \tag{8}
\end{equation*}
$$

finally, $r v_{\theta}=|\vec{r} \times \vec{v}|=|\vec{L}| / m$
Q: why?, so

$$
\begin{equation*}
d A=\frac{1}{2} \frac{L}{m} d t \tag{9}
\end{equation*}
$$

Woo hoo! were' home free! Q : why?

But $L=$ const for radial force $(\vec{r} \times \vec{F}=0)$ SO

$$
\begin{equation*}
\frac{d A}{d t}=\frac{L}{2 m}=\text { const } \tag{10}
\end{equation*}
$$

Kepler II! \rightarrow comes from ang. mom. cons.!

iClicker Poll: Orbits and Angular Momentum II

Consider two objects at 1 AU :

- a planet in a circular orbit
- a spacecraft moving directly towards the Sun

Which has the larger magnitude of angular momentum?

A the planet

B the spacecraft
C either, depending on the speed of the spacecraft

Kepler III: $a^{3}=k P^{2}$
Newton: can prove generally for elliptical orbits
bad news: price is lotsa algebra
good news: simple to do for circular orbits circular $\rightarrow r=a$, and $v^{2}=G M / a$ but also $v=2 \pi a / P Q$: why?

$$
\begin{align*}
v^{2}=\left(\frac{2 \pi a}{P}\right)^{2} & =\frac{4 \pi^{2} a^{2}}{P^{2}} \tag{11}\\
& =\frac{G M}{a} \tag{12}\\
\Rightarrow a^{3} & =\left(\frac{G M}{4 \pi^{2}}\right) P^{2} \tag{13}
\end{align*}
$$

check!
$\stackrel{\rightharpoonup}{\perp}$ bounus: $k=G M / 4 \pi^{2}$ depends on mass of central object \rightarrow same k for all planets

