> Astro 210
> Lecture 9
> Sept 13,2010

Announcements

- HW3 due in class Friday hardcopies available-note they are twosided
- HW2 Q4 (10 bonus points) available till Oct 1
- HW1 back today; scores on Compass
- Participation (iClicker) scores posted on Compass
- Bigshot astronomer in town this week Iben Distinguished Lecturer: Tony Tyson lead scientist on top new telescope for 2010-2020 decade!
$\checkmark \quad$ "Exploring the Dark Side of the Universe" 7pm Wed Sept 15, Foellinger; more info on course page

Last time: Kepler from Newton
solve $\vec{F}=m \vec{a}=m \ddot{\vec{r}}$ with $\vec{F}=-G M m / r^{2} \hat{r}$
gives back Kepler's laws, and so

- agrees precisely with observed planet orbits
- also explains how orbits arise from gravity
- and gives, e.g., circular speed: $v_{\mathrm{c}}=\sqrt{\frac{G M}{r}}$
- and updates Kepler III: $a^{3}=\left(\frac{G M}{4 \pi^{2}}\right) P^{2}$

Energy

For "test" particle m moving due to gravity of M Gravitational potential energy: Q : why "potential"? $P E=-G M m / r$

Kinetic energy:

$$
\begin{equation*}
K E=\frac{1}{2} m \vec{v}^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)=\frac{1}{2} m \dot{\vec{r}}^{2} \tag{1}
\end{equation*}
$$

Total energy:
$T E=K E+P E=-G M m / r+\frac{1}{2} m \dot{\vec{r}}^{2}$
key result: $d(T E) / d t=0$
\rightarrow total energy conserved!
ω that is: value of $T E$ the same for all time!

Orbits Revisited

Bound orbits (circle \& ellipse): in polar coordinates

$$
\begin{equation*}
r(\theta)=\frac{\left(1-e^{2}\right) a}{1+e \cos \theta} \tag{2}
\end{equation*}
$$

Circle radius $r=a=$ const, eccentricity $e=0$ recall: circular orbit has constant speed $v_{\mathrm{C}}^{2}=G M / r$

$$
\begin{align*}
P E & =-\frac{G M m}{r}<0 \tag{3}\\
K E & =\frac{1}{2} m v_{\mathrm{c}}^{2}=\frac{1}{2} m \frac{G M}{r}=\frac{1}{2} \frac{G M m}{r}=-\frac{1}{2} P E \tag{4}\\
\Rightarrow T E & =K E+P E=P E / 2=-|P E| / 2<0 \tag{5}
\end{align*}
$$

- $T E<0$: negative? yes!

Q: what does it mean to have negative energy?
for orbiting system $T E<0$:
\rightarrow have to supply energy to system to break it apart

Why? when particles are at rest and "very" far apart

$$
K E=m v^{2} / 2=0
$$

$$
P E=G M m / r \rightarrow 0 \quad Q: \text { how far apart is this? }
$$

$$
\text { and so } T E=K E+P E=0 \text { : zero total energy }
$$

But if start in closed orbits (circular or elliptical): $T E<0$
\rightarrow To "break" the system from closed orbits, must add energy
But energy is conserved \rightarrow not spontaneously added
so system is bound
\Rightarrow can't fall apart without external influence

Note: $K E=-P E / 2=|P E| / 2$ generally true for
\checkmark gravitating systems in equilibrium:
"virial theorem"
ellipse: semimajor axis a, eccentricity $0<e<1$
turns out: TE depends only on a, not e
from cons of energy
$T E=-G M m / r+\frac{1}{2} m v^{2}=-G M m / 2 a<0 \rightarrow$ bound
can show

$$
\begin{equation*}
v^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right) \tag{6}
\end{equation*}
$$

"vis viva" equation ("life force")
discovered prior to concept of energy
handy: gives total speed v at any radius r

Q: at which r is $v=0$? how does this work for a circular orbit?
Q : for a given orbit (fixed e), when is v max?

Unbound Orbits

Note that both parabolic and hyperbolic orbits are not periodic - do not close on themselves "one-way ticket" past the central object

Parabola

$e=1$

$$
\begin{equation*}
r=\frac{2 p}{1+\cos \theta} \tag{7}
\end{equation*}
$$

p is distance of closest approach
for parabolic orbit:
$T E=0$ exactly! $\rightarrow K E=-P E$ exactly! very special case!
$\Rightarrow G M / r=\frac{1}{2} v^{2}$
So at $r=\infty, v=0$
to have this orbit, launch from r with speed
$v_{\text {launch }}=\sqrt{2 G M / r}$

iClicker Poll: Orbits

given: test particle m, at distance r from gravitating body M for test particle to have total energy $T E=0$ launch from r with speed $v_{0}=\sqrt{2 G M / r}$

Q: what happens if launch with speed $v>v_{0} ?$

A particle will be in a bound orbit: circle or ellipse
B particle will be unbound, with speed $v \rightarrow 0$ as $r \rightarrow \infty$
C particle will be unbound, with speed $v>0$ as $r \rightarrow \infty$

Q: why is v_{0} a special speed?

Escape Speed

At radius r, define escape speed $v_{\text {esc }}=\sqrt{2 G M / r}$

- if launch from r with $v_{\text {launch }}<v_{\text {esc }}$ then $T E<0$: fall back! (elliptical orbit)
- if launch from r with $v_{\text {launch }}>v_{\text {esc }}$ then $T E>0$: escape "easily" : $v>0$ at $r=\infty$
- if launch from r with $v_{\text {launch }}=v_{\text {esc }}$ exactly thyen $T E=0$ exactly, "just barely" escape

So: escape speed is minimum speed needed to leave a gravitating source

Example: escape speed from earth $v_{\text {esc }}=11 \mathrm{~km} / \mathrm{s}=25,000 \mathrm{mph}$!
predict the future: if toss object with $v<25,000 \mathrm{mph}$, falls back but if $v>25,000 \mathrm{mph} Q$: example? never returns!
finally, the more "generic" unbound orbit:
hyperbola

$$
\begin{equation*}
r(\theta)=\frac{\left(e^{2}-1\right) a}{1+e \cos \theta} \tag{8}
\end{equation*}
$$

$e>1, T E>0$
$v>0$ at $r=\infty$: nonzero speed far from M

Recall: at large r, hyperbola \rightarrow straight line
But Newton says: $d \vec{v} / d t=-G M / r^{2} \hat{r}$
so as $r \rightarrow \infty$, then $d \vec{v} / d t \rightarrow 0$
\Rightarrow gravity negligible, $\vec{v} \rightarrow$ const: free body=straight line!
orbit of unbound "flyby":
$\stackrel{\rightharpoonup}{ }$ distant nearly free body \rightarrow passing: pulled toward M
\rightarrow distant deflected nearly free body

Testing Newton’s Gravity

Moons of Juptier: obey Kepler's laws
\rightarrow Jupiter's gravity works like Sun's, Earth's

1830's: Uranus observed orbit did not follow predictions of Newtonian solar system model
\Rightarrow the death Newton's gravity?
recall: theory must explian all data, not just some! so despite Newton's great job with planets, moons even one clear failure is enough

Q: so do we have to throw out Newtonian gravity?
$\stackrel{\rightharpoonup}{\mathrm{N}} \mathrm{Q}$: why hesitant to throw out?
Q: if not abandon, what's another solution to the problem?

iClicker Poll: Uranus Discrepancy

1830's Problem: measured Uranus orbit doesn't match preditions of Newtonian Gravity theory

Vote your conscience!
Which seems more likely to you?

A Newton's gravity theory correct, but not all gravity sources had been included

B Newton's gravity theory incorrect (or at least incomplete)

Q: what experiment/observation would tell which is right?
maybe haven't included all sources of gravity?
maybe unknown object causes U's deviations?
\Rightarrow a new planet?
if unknown object, could predict where should be did this, looked. saw:
www: Neptune
1846: Neptune found at right position
\triangleright predicted by Newton's gravity
very impressive! victory snatched from jaws of defeat!
triumph of Newtonian dynamics and gravity
many other confirming observations
www: binary star orbits

