Astro 350 Lecture 13 Sept. 21, 2011

Announcements:

- Hour Exam 1 next time, in class info on course website
- HW3 back today; all HW solutions posted on Compass
- Discussion Question 4 due *next Wednesday*

Last time: the lives an deaths of stars

- *Q*: what life stages are the same for all stars?
- *Q*: what are different star fates?
- *Q*: what is left after stars die?

trends in star properties:

high mass $M \leftrightarrow$ high wattage $L \leftrightarrow$ short lifespan τ e.g., massive star lifespans = few million years low $M \leftrightarrow$ low wattage \leftrightarrow long life

e.g., low-mass star lifespans = many billions of years

if many stars born at once—as in a cluster—then massive stars die first (explode) then only lower-mass stars left

observed! young cluster have massive stars old clusters do not

Supernovae* and Cosmology

Supernova explosions are excellent cosmological tools for a number of reasons

Q: why? what is advantageous/interesting about observing supernovae all across the universe?

Q: what would be challenging about observing supernovae?

*Cosmo-grammar tip: one supernova, many supernovae (it's Latin, dude!)

ω

Cosmology with Supernovae: Pros

supernovae are powerful, very luminous explosions marking the the deaths of massive stars \rightarrow handy tools for cosmologists

supernovae are very luminous
 can see from great distances—across the universe!
 and since telescopes are time machines...
 SN are beacons revealing much of cosmic history

 ★ supernovae come from massive stars short-lived → require ongoing star formation
 → SN reveal presence and nature of star formation at distant places and times

4

Cosmology with Supernovae: Cons

Supernova events are explosions of massive stars

- don't know ahead of time when a star will blow up
- explosion brightness temporary-dies off after a few months
- < 1% of stars are massive \rightarrow few die this way only few each century in big galaxy like ours last observed SN in Milky Way was > 300 yrs ago

Practical challenges:

- ▶ have to monitor many galaxies
 to have good chance of finding a SN
 ▶ want to find peak brightness (flux) F_{peak}
 → have to observe ecah SN more than once
 as it flares up then dims
- Ю

Observational Strategy:

- monitor lotsa galaxies
- observe each every few weeks
- \rightarrow requires huge data processing

powerful computers, digital cameras make this possible e.g., can digitally "subtract" before/after images \rightarrow difference shows what's changed: SN www: SN search teams

Standard Candles and Astronomical Distances

Supernovae^{*} have very useful property \Rightarrow peak luminosity L_{peak} always the same ...as best can tell so far... an extremely useful property!

recall: apparent brightness (flux F) depends on luminosity but also on distance: $F = \frac{L}{4\pi R^2}$

★ imagine object with known luminosity: "standard candle" e.g., 100 Watt lightbulb, or SN at peak www: cartoon → can measure flux $F_{\rm obs}$, and using known $L_{\rm candle}$ solve for distance $R = \sqrt{\frac{L_{\rm candle}}{4\pi F_{\rm obs}}}$

Supernovae are great standard candles because give distance measures across the universe

*In fact: a special kind of supernova: "Type Ia" = exploding white dwarfs

Supernovae Observed Across the Universe

Results thus far:

- \star supernovae seen out to great distances \rightarrow early times star birth indeed occurred in the past, not just now!
- \star in fact, birthrate *much* higher in the past!
- ★ also: SN as standard candles give very interesting result ... will provide most direct evidence for bizarre dark energy!

Galaxies: Sweet Home Milky Way

iClicker Poll: Our Milky Way Galaxy

Milky Way to eye: irregular band of light www: MW mosaic, closeup of dark lane

What is the dominant Milky Way light source?

A predominantly gas

roughly equal mix

10

Q: MW is band on 2-D sky–what about 3-D space?

Galileo's telescope showed: MW made of stars eye can't separate, light blends together

MW band in 2-D sky \rightarrow 3-D disk of stars note similarity with planar concentration of planets in SS

where are we in the disk-near middle or edge? www: MW mosaic on MW band in sky, stars \approx evenly distributed *Q: simplest interpretation?* www: Herschel model (1700's) *Q: loophole in the argument?* clue: dark strips in MW dust: absorbs light \rightarrow only see small part of MW disk this fact only verified in 20th century

But then: How to determine MW structure and size?

H. Shapley (1910's): **globular clusters** of stars most lie **out** of disk plane \rightarrow we have unobscured view

Q: how does sky pattern of GC's tell where we are?

If we are at MW center:

 \rightarrow see GC's evenly spread around the sky

If we are off-center:

 \rightarrow see GC's more on one side of sky

 \rightarrow that's Galactic "downtown"

www: observed GC sky distribution
* we are not at the Milky Way center!

high-tech update:

13

dust obscures *visible* light, but not longer wavelengths dust "invisible" if $\lambda \gg$ dust size so infrared, radio telescopes *can* see all of MW will see: these confirm we are off-center

Revolution Revisited

Cosmologist Y. Berra: It's déjà vu all over again!

Copernican Revolution I (17th Century):

we're one typical planet among many not center of solar system

Copernican Revolution II (earth 20th Century):

we're one typical star among many not center of Milky Way Galaxy

... stay tuned for more...

Observed Milky Way Structure

Milky Way contains about $10^{11} = 100$ billion stars

I. Disk Components: most of luminous matter radius $R \sim 15,000 \text{ pc} = 15 \text{ kpc}$ (kpc = kiloparsec = 1000 pc) thickness $h \sim 200 \text{ pc}$ at our location: thin! www: IRAS full sky: dust. False color, Galactic coords www: DIRBE near-IR image: cool stars note-confirms our suburban location! 1. disk contains most stars 2. also dust, gas \rightarrow fuel for star formation

Disk Structure

- disk thickest in center, tapers off outward
- disk shows evidence for spiral arms

 \rightarrow we are spiral galaxy! (as in www: M104)

15

II. Spherical Components

- 1. bulge at center (old stars, can see in DIRBE image)
- 2. globular clusters
- 3. "halo" of old stars

Milky Way Dynamics

in MW, all objects exert gravity on all others

- \rightarrow everything accelerating
- \rightarrow everything is in motion

Hour Exam 1

www: Exam Info on Course Website

www: Front Page: Instructions and Equations

Any Questions?

Sample Questions

Multiple Choice

An object orbiting the Sun with a semimajor axis of 9 AU has what orbital period?

- (a) 3 years
- (b) 9 years
- (c) 27 years
- (d) depends on orbit eccentricity

Short Answer

Star cluster Gaga discovered, and is made of stars that were all born at the same time. Cluster Gaga is found to have no stars more massive than $1M_{\odot}$.

- What is the most likely reason that cluster Gaga has only stars with mass $\leq 1M_{\odot}$? Explain in 1–2 sentences.
- Do you predict cluster Gaga should contain white dwarfs? neutron stars? Briefly explain.