Astro 350 Lecture 15 Sept. 28, 2011

Announcements:

- HW4 due Friday
- Discussion Question 4 due today
- Hour Exam 1 back next time

FYI: Bigshot cosmologist in the house!

Dr. Jonathan Gardner

 \vdash

- a lead scientist on James Webb Space Telescope successor to Hubble
- Astro Colloquium: Tue Oct 4, 4pm, 134 Astronomy bldg "The James Webb Space Telescope"
- Public Talk: Tue Oct 4, 7:30pm, 151 Loomis (Physics bldg)
 "A Scientific Revolution: the Hubble and James Webb
 Space Telescopes"

Superluminal Payoff!

Last time: Reports of faster-than-light neutrinos

- *Q*: what was the experiment?
- result is *not* warp speed! allegedly $v_{\nu} = 1.000025c$
- yet a Big Deal if true Q: why?
- I made two wagers: one has come true! theory papers by Friday? www: Yes! four by Tuesday! *Collect and digest your sweet rewards!*
- Fermilab soon begins similar experiment
 www: MINOS will confirm/refute!

^N Milky Way: Q: where do we live?

Milky Way Dynamics

Milky Way stars orbit Galactic center orbits roughly circular

MW rotation pattern:

plot rotation curve: orbit speed vs distance from center

as a warmup:

Q: rotation curve for points on frisbee (all same period P)?

iClicker Poll: Solar System Rotation Curve

Rotation curve: plot orbit speed v vs distance R

What is the rotation curve shape for solar system objects?

Α

4

- \boldsymbol{v} increases with increasing \boldsymbol{R}
- **B** v constant with increasing R
- \mathbf{C} v decreases with increasing R

Milky Way Rotation Curve

www: Milky Way rotation curve data find $v \sim const$ beyond $R \sim 2$ kpc "flat rotation curve" speed stays constant (still flat) out to largest R

even when there are no more stars/gas/dust!

compare/contrast: solar system rotation curve *Q: what does the MW/SS difference mean?*

recall (HW2): orbits provide measure of gravity stronger gravity \rightarrow larger accel \rightarrow faster orbits and stronger gravity \rightarrow more mass \Rightarrow orbits measure mass interior to motion

in detail (HW5): circular velocity $v_{\text{circ}} = \sqrt{GM_{\text{enclosed}}/R}$: use to get mass interior to R $\rightarrow M(R) = v_{\text{circ}}^2 R/G$

Solar System: $M(R) = M_{\odot} = const$ for all orbits \rightarrow so $v \propto 1/\sqrt{R}$: rotation curve *decreases* with *R* i.e., Mercury is speedy, Pluto slowpoke

But for outer Milky Way: v(R) = constQ: what does this mean for M(R)?

σ

Milky Way Rotation Curve

disk stars: ~ circular orbit \rightarrow disk rotates plot **rotation curve: orbit speed vs distance** find $v \sim const$ beyond $R \sim 2$ kpc "flat rotation curve"

Newton's gravity and Newton's laws of motion say

$$M_{\text{enclosed}}(R) = \frac{v_{\text{circ}}(R)^2 R}{G} \propto v^2 R$$

(1)

for flat rotation curves v = const, so $M(R) \propto R$: Galaxy mass keeps increasing with R ...even when there's no more stars/gas/dust!

~

MW mass estimate (rot curves): $M_{MW} = 5 - 10 \times 10^{11} M_{\odot}$ total but stars & gas: $M_{\star} \simeq 10^{11} M_{\odot}$ \rightarrow only 10 - 20% of total!

Forced to conclude: a large amount of mass is unseen! *most* (80-90%) of Galaxy mass is in the form of **dark matter**!

Revised view of Milky Way structure:

00

- disk: most stars, all gas/dust $R_{\rm disk} \approx 15$ kpc
- bulge/stellar halo: older stars, globular clusters
- ...but most of Galaxy in dark halo $R_{dark} > 50$ kpc Milky Way much more massive, larger, than meets the eye!

Q: what do rot curves say about the nature of dark matter?

Dark Matter

most of MW matter is dark

What is the dark matter? Unknown! (yet!) rotation curves don't specify details, only:

dark: must not glow

(i.e., must be very dim in EM radiation)

matter: must have mass (gravity)

Multiple possibilities exist:

Q: suggestions? ... no peeking!

What is the DM? Unknown (to date). Guesses:

black holes neutron stars white dwarfs "failed stars" – "Jupiters," brown dwarfs hot $\sim 10^6$ K gas (emits X-rays, but not visible light) neutrinos relic particles from big bang in the rest of the semester, we will work through list

Q: how do you confirm/refute a candidate?

The Hunt for Dark Matter: Case Study

Example: imagine DM is in form of white dwarfs

If white dwarfs are our Milky Way's dark matter

- MW halo composed of a large number (> 10^{11}) of WD
- they had to get there

Q: How could this have happened? What evidence would be left today? Hint–what are white dwarfs? How are they made?

White Dwarfs as Dark Matter

Recall—white dwarfs are corpses of $0.8 - 8M_{\odot}$ stars WD recipe:

- (1) form star with mass in range $0.8-8M_{\odot}$
- (2) star dies 200 million to billions of years later
- (3) \gtrsim 50% of mass ejected as gas enriched in He, C
- (4) white dwarf left over

12

If white dwarfs are dark matter, then

- \star had to make very many $0.8-8M_{\odot}$ stars
- \star they had to have time to die
- \star white dwarfs not initially dark \rightarrow need time to cool & dim
- \star more mass ejected than left as WD, full of C and He

Would leave evidence: making many omlettes \rightarrow lotsa broken eggs!

- old, cool, dim white dwarfs in dark halo
- huge amount of He & C-rich gas ejected from MW should still be nearby

Observations weigh in:

- Hubble Telescope: no halo white dwarfs seen
- no evidence for helium & carbon-rich gas nearby
- looking outward \rightarrow back in time don't see formation, death of enormous numbers of $0.8 - 8M_{\odot}$ stars in other galaxies

⇒ white dwarfs ruled out as dark matter!

in next weeks, will see::

most dark matter candidates can now be ruled out! and the most(?) exotic option—exotic elementary particles is the most favored!

www: particle dark matter detection experiment

 $\stackrel{i}{\omega}$ actually, another logical explanation can account for flat rotation curves... *Q: namely?*