Astro 350 Lecture 16 Sept. 30, 2011

Announcements:

- HW4 due now
- HW5 available, due next time
- Hour Exam 1 back next time (mea culpa!)

FYI: Bigshot cosmologist in the house!

Dr. Jonathan Gardner

 \vdash

- a lead scientist on James Webb Space Telescope successor to Hubble
- Public Talk: Tue Oct 4, 7:30pm, 151 Loomis (Physics bldg) "A Scientific Revolution: the Hubble and James Webb Space Telescopes"
- Astro Colloquium: Tue Oct 4, 4pm, 134 Astronomy bldg "The James Webb Space Telescope"
- informal seminar: Tue Oct 4, 2pm, 134 Astronomy bldg "How to get a job working for NASA"

Last time: Milky Way rotation curve and dark matter

- *Q*: what's a rotation curve?
- *Q*: what is the rotation curve of the MW?
- Q: how does it tell us there is dark matter?

Q: what is another way to explain the rotation curve without any dark matter at all? Q: what is attractive about this idea? unattractive?

Alternative Hypothesis: Gravity's Broke!

rotation curve data are what they are surprise when compared to theory prediction but theory based on Newtonian gravity theory and, looking ahead, Einstein's General Relativity gives same prediction

but theory & data don't agree

ω

- maybe like 18th Century observations of Uranus' orbit \rightarrow keep theory, but need new matter (Neptune)
- or maybe like Kepler's study of Mars' noncircular orbit \rightarrow throw out busted theory, get a better one!
- if Newton correct on Galactic scales, then DM needed
- alternatively: maybe Newton incorrect for Galaxy!

- new "modified" gravity theories have been proposed some already ruled out, but some not (yet?)!
- tricky have to still accurately predict solar system motions
- and will find DM/alt gravity needed beyond Milky Way difficult to explain everything with simple mod grav theory
- also: very recent data may rule out most modified gravity theories

For most of the course:

we will assume Newton is correct, dark matter exists but: remember how science works-humility/open mind essential!

my view: dark matter likely to exist

▶ but unproven till identified

Realm of the Nebulae

"Nebulae" - fluzzy pinwheels or blobs on sky know for centuries (since telescope) www: examples but are they in MW or beyond it?

key question: distance

Curtis-Shapley debate (1920): What is the scale of the Universe?

	H. Shapley	H. Curtis:
MW size	about 10 kpc	about 1 kpc
nebula distances	nearby, inside MW	far, outside MW
nebula sizes	small, like planetary nebulae	large, like our galaxy

turns out: both partially right, partially wrong to settle the debate: need more data \rightarrow need distance indicator " e.g., "standard candle" *Q: which is?*

Hubble–The Man: Scale of the Universe

recall a standard candle is

object with known luminosity ("wattage") L if know L, measure flux F, then $d=\sqrt{L/4\pi F}$

Edwin Hubble: grew up in Wheaton, college in Chicago pioneered observations of galaxies

in 1920's: Hubble exploited variable stars: "Cephieds" www: animation pulsate due to instability in atmosphere pulsation period related to luminosity so measure period \rightarrow know $L \rightarrow$ standard candle

Hubble found Cephied in M31 www: Hubble's discovery image \rightarrow established that it is 100's of kpc away \rightarrow extragalactic! "island universe" "Realm of the Nebulae"

Galaxies

galaxies fill universe typical separation $\sim 10^6$ pc = 1 Mpc (megaparsec) most distant 1000's of Mpc

 \Rightarrow galaxies are huge masses of stars

Galaxies sizes range large (like MW) to small "dwarf" different shapes:

spiral: disk+bulge gas, dust evident \rightarrow star formation ongoing

```
\overline{}
```

elliptical: elongated sphere, no disk no/very little gas, dust \rightarrow star formation ceased **irregular**: no simple geometry gas, dust present \rightarrow can form stars

Milky Way one of many galaxies \rightarrow a typical spiral

Revolution Re-Revisited

Copernican Revolution I (17th Century):

Earth is one typical planet among many not center of solar system

Copernican Revolution II (earth 20th Century):

Sun is one typical star among many not center of Milky Way Galaxy

Copernican Revolution III (1920's):

Milky Way is one typical galaxy among many Universe much larger than previously thought ... stay tuned for more...

iClicker Poll: Rotation Curves of Other Galaxies

Would like to compare Milky Way rotation curve to those of other galaxies

Compared to the Milky Way,

measuring the rotation curve of a nearby galaxy is

- A easier, but only if the galaxy's disk is seen edge-on
- B easier, but only if the galaxy's disk is seen face-on
- C always harder

sorry, can't measure rotation curve of other galaxies

Galaxy Rotation Curves

www: rotation curves

Results:

- all galaxies show flat rotation curves similar to MW – we are not a weirdo!
- flat portion very clearly extends well beyond visible matter (stars/gas/dust)

Q: which means?

Galaxies Are Made of Dark Matter

Interpretation:

- all galaxies contain large amounts of dark matter!
- in fact, *most* have a *larger* proportion than in MW!

Dark matter fills the Universe!

all galaxies are made of it!

Any successful cosmology theory must

- include dark matter as a key ingredient
- explain what the DM is
- explain why we have so much of it

Galaxy Demographics

Diversity of galaxy shapes, sizes is hint to their origins \rightarrow very useful to know what is common, what rare

Galaxy Census: Shape ("Morphology")

Roughly: on average, find $\approx 1/3$ elliptical, 1/3 spiral, 1/3 irr But really: depends on environment more ellipticals where galaxies densely packed fewer where galaxies sparse Q: what might this mean?

Galaxy Census: Size (Really: Luminosity)

13

a wide range in galaxy luminosity & size seen
but clear trend: dwarf galaxies much more numerous
than large galaxies (like ours!)
although: visible mass in large galaxies roughly comparable
to mass in dwarf galaxies
Q: what might this mean?

Ellipticals numerous where galaxies densely packed \rightarrow maybe ellipticals come from collisions

Small galaxies more numerous than large → maybe small galaxies made first combine to form large galaxies

Both trends hint that collisions and mergers play important role in galaxy evolution *Q: if so-how can we test this?*

Evidence for Galaxy Interactions

If galaxy interactions are important and frequent then we should be able to catch some "in the act"

Interactions are observed:

- ★ Milky Way currently "cannibalizing" dwarf galaxies which are passing through the disk!
- \star merging galaxies seen, distorted due to mutual gravity center of merger \rightarrow gas collides, compressed
 - \rightarrow high rate of star formation
- ★ starburst galaxies seen: high star formation due to recently completed merger?
- G Cosmology theory must include galaxy interactions!

Why Relativity?

Cannot discuss cosmology without relativity!

Why?
cosmology is the history of the universe
 i.e., all space over all time
 ⇒ need scientific description, understanding of space and time

Relativity is the (modern) scientific theory of space and time

Jumping to the conclusion of the next few classes:

- * the nature of space and time has many possibilities and each has measurable consequences
- ↓ the one we live in must be determined scientifically
 ★ space, time, geometry are *experimental* questions!