Astro 350 Lecture 19 Oct. 7, 2011

Announcements:

- HW5 due
- HW6 out, due next Friday
- Discussion Question 6 posted, due next Wednesday

Last time: Special Relativity

- train + lightning experiment: lessons?
- moving clock experiment: lessons?

Train: disagreement about whether events are simultaneous

- \rightarrow "at the same time" is not a universal concept
- \rightarrow ''relativity of simultaneity''
- \rightarrow "universal time" doesn't exist, depends on motion

Moving clock: disagreement about tick duration

- moving clock appears to run slowly (tick lasts longer)
- "time dilation"
- time does not "flow" at universal rate, depends on motion

Q: who's right in all these disagreements?

Everybody's right! that is,

- all observations correctly reported
- real problem is deeper:

Aristotelian notion of universal space, time are *invalid*

- \star Space, time depend on state of motion of observers
- but no observer ever sees her/himself as the wierdo i.e., your (nearby, at rest relative to you) clocks & yardsticks never appear weird to you
- bizarreness only can arise when looking at things moving fast
 and/or at a distance

More later on what we *can* all agree on...

ω

Time Dilation in the Real World

high energy particles from space ("cosmic rays") collide with Earth's atmosphere produce unstable particles: muons μ seen at ground in lab, at rest: muons decay after $t_{decay} = 2 \times 10^{-6}$ sec

at top of atmosphere: height h = 10 km muons born with speed v = 0.9999c

4

Do they reach the ground? Earth bystander: moving μ needs travel time $t_{\text{moving}} = h/v = 33 \times 10^{-6} \text{ sec} > t_{\text{decay}} \rightarrow \text{too long?!}$ should never see muons on ground! but we see plenty! Why? muon "feels" at rest, and trip takes only $t_{\text{rest}} = \sqrt{1 - v^2/c^2} t_{\text{moving}} = 0.5 \times 10^{-6} \text{ sec} < t_{\text{decay}}$ \Rightarrow muon survive trip due to time dilation!

Relativity and Lengths

Turn light clock on side, use as yardstick: at rest, clock length L_{rest} shine light, front-to back roundtrip \rightarrow travel time $t_{rest} = 2L_{rest}/c$

HW6: bystander times light pulse finds clock length to be

$$L_{\text{moving}} = \sqrt{1 - \frac{v^2}{c^2}} L_{\text{rest}}$$
(1)

Q: lesson?

σ

Length Contraction

- ★ moving yardsticks don't appear to have same length as yardsticks at rest
- ★ moving yardsticks appears shorter
- ***** moving objects appear shorter in direction of motion!
- \star space depends on state of motion! not universal!

iClicker Poll: Special Relativity

Which of these can *all* observers agree on

regardless of their state of motion?

- I. Justin Bieber is 17 years old
- II. Chambana and Chicago are 130 miles apart
- III. radio signals from spacecraft move at speed \boldsymbol{c}

A I only

B II only

C III only

all of I, II, and II

The Special Theory of Relativity

Einstein 1905: realized all of the above

Implications deep and wide
Newton's laws of motion built upon absolute space, time
⇒ no longer valid! have to be rebuilt
to respect principle of relativity

Einstein did all of this as well in 1905

Revamped Newton's laws of motion \rightarrow special relativity

describes motions at any speed

00

- includes all wierdo time, space effects
- tested many ways many times, always found to agree with experiment
- e.g., particle acclerators (like Fermilab) would not work if we did not use relativity!

Energy in Relativity

Einstein revised expressions for energy:

a particle of mass m with speed v has (total) energy

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{2}$$

Enormously important formula

Q: what is E when v = 0? What does this mean?

Q: what is E when $v \ll c$ but not zero? What does this mean?

Q: what is E when $v \rightarrow c$? What does this mean?

9

Mass is Energy

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

(3)

- energy output if mass *m* totally converted to some other energy form
- can be enormous: $m_{\text{donut}}c^2 = 4 \times 10^{15}$ Joules = 1 Mton TNT So: mass is a form of energy!
- ⁶ Q: so what prevents donuts from exploding? Q: when and where is mass converted to energy?

Mass \Leftrightarrow **Energy Interconversion**

Implies: can convert mass to energy, *and* energy to mass in fact—we do this every day at Fermilab!

energy \rightarrow matter www: Fermilab collision event 2 particles with huge KE \rightarrow many particles

but: if mass stays as mass, energy remains "stored" and harmless (but tasty: mmmmm, donuts...)

Kinetic Energy Generalized

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• if $v \neq 0$, then $E > mc^2$: speeding up a particle gives it more energy extra amount above mc^2 is kinetic energy (Einstein's version)

• if
$$v \ll c$$
 but $v \neq 0$, can show (HW 6)

$$E \approx mc^2 + \frac{1}{2}mv^2 \tag{5}$$

= (rest energy) + (Newtonian kinetic energy) (6)

(4)

• Einstein sez: particles have same KE as Newtonian if the motion speeds slow compared to c

12

Q: Why did this conclusion have to be true?

In general (haven't proven this, but can):

At slow speeds ($\ll c$):

Special Relativity \rightarrow Galilean/Newtonian physics

Had to be true!

- recall: a theory has to explain all data
- Newton was wildly successful explained all available data until new measurements involving fast speeds (i.e., light)
- new theory (Special Relativity) must explain new data but also must explain all old data!
- \Rightarrow so SR must agree with Newton where Newton was successful

The beauty and power of Relativity:

- \star does give back Newtonian results at slow speeds
- \star explains conditions when Newton does and does not work!
- * provides larger, more complete picture!

13

Cosmology theory will have to respect these ideas of causality!

The Futility of Acceleration to Lightspeed

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{7}$$

What if $v \rightarrow c$?

• find $E \rightarrow \infty$

Interpretation:

14

can speed up a mass m, but as speed gets close to c...

- to get particle to go a little faster takes more and more energy
- and to get particle to go at *c* requires *infinite* energy physically unachievable, impossible!
- matter (objects with mass) cannot reach speed of light

Q: what if massless particle, m = 0?

Solve E equation for v:

$$v = c_{\sqrt{1 - \left(\frac{mc^2}{E}\right)^2}} \tag{8}$$

if m = 0, then v = c!

- to move at c, must be massless!
- light particles (photons) are massless!

technical note:

• more general formula works for all particles with mass *m* and momentum *p*:

$$E = \sqrt{(mc^2)^2 + (cp)^2}$$
(9)

- massive particles have relativistic momentum $p = mv/\sqrt{1 v^2/c^2}$
- massless particles have E = cp
 - all particles have $v/c = cp/E \leq 1$

The Cosmic Speed Limit and Causality

all particles (massive or massless) have $v/c \leq 1$ i.e., always have $v \leq c$

speed of light is universal speed limit

particles & information cannot travel faster than c profound implications for cause & effect ("causality")

- an event can only affect future happenings which can be reached by light signal from the event
- so "region of future influence" by an event is defined by the (future) light cone of the event
- spacetime regions beyond the reach of a light signal cannot be affected!

16

Q: what portion of past spacetime can affect an event?