Astro 350 Lecture 25 Oct. 21, 2011

Announcements:

- HW7 due now
- Good news: no HW for next week
- Bad news: Hour Exam 2 next week
 www: info online

Last time:

large-scale structure, Hubble's Law *Q: What's the cosmological principle? What does it mean? What is it's range of applicability? Why is cosmo principle very restrictive? Why is it the "cosmologist's friend? Q: What's Hubble's law? What does it say in simple terms? What's the pattern of galaxy motions relative to us? What are possible interpretations of this motion?*

Structure + Dynamics: Evolution

observe:

- U. homogeneous, isotropic
- Hubble law v = Hr

i.e., galaxies smoothly spread in space, yet moving tooand motions are all directed away from us!i.e., galaxy velocity pattern "points back to us"

Q: how reconcile?

at least 2 logical possibilities...

1. "Egoist" interpretation: we are at the center of U. Imagine galaxies all launched from same point (here) initially: each launched with different speed v_{gal} afterwards: each coasts, keeping its $v_{gal} = const$

Then after time t, a galaxy seen at distance $r = v_{gal}t$ so $r \propto v_{gal} \Rightarrow$ farther = faster: Hubble!

In this picture: Hubble law means $r = v_{gal}t = H_0rt$ so "coasting time " is $t_H = 1/H_0 = 14 \times 10^9$ yr = 14 billion yrs "Hubble time"* – "egoist" age of Universe

and since max "launch" speed is $v_{gal} < c$ expect "edge" of galaxy sphere at radius $d_{\rm H} = ct_{\rm H} = c/H_0 = 4200$ Mpc "Hubble Radius/Length"* – "egoist" size of Universe

ω

*When egoism is discarded, we'll reinterpret the Hubble length & time, but still find both useful & interesting numbers So "egoist" picture gives Hubble's law!

Logically possible! But...

Q: give a philosophical reason why we don't believe this

Q: give a physical reason why this treatment can't be right?

Q: give an observational reason why we don't believe this

Critiques of Cosmic Egoism

We are at the center of the universe?

Philosophically:

• not Copernican (violates "principle of mediocrity")

Physically:

haven't included gravity!

Observationally:

- Milky Way, local galaxies don't look special not what expect from center of explosion compare supernova \rightarrow distinctive neutron star/BH at center
- no evidence for "edge" to Universe at great distances

σ

The Magic of Hubble

Slightly technical derivation: consider three arbitrary cosmic points: $\vec{r}_{BC} = \vec{r}_{AC} - \vec{r}_{AB}$

Assume A sees Hubble's law:

- $\vec{v}_{AB} = H\vec{r}_{AB}$
- $\vec{v}_{AC} = H\vec{r}_{AC}$

Then ask: what does B see? C?

find velocities relative to B: $\vec{v}_{BC} = \vec{v}_{AC} - \vec{v}_{AB} = H(\vec{r}_{AC} - \vec{r}_{AB}) = H\vec{r}_{BC}$

This is huge!
 Q: why? What have we proven?

we have shown:

if A sees Hubble's law, then so do (arbitrary) B and C thus: if *any* observer measures Hubble's law then *all* observers will measure Hubble's law!

so: Hubble law implies

 \rightarrow all galaxies recede according to same law

 \rightarrow no need for center, space has no special points

Moreover: Hubble law is *only* motion which preserves homogeneity and isotropy i.e., *any* other motion breaks cosmo principle ...but Hubble law is exactly what's observed!

Coincidence? I think not! \rightarrow trying to tell us something! \neg

Leads to the other interpretation of Hubble's Law...

2. Einstein interpretation of Hubble's law:

using General Relativity:

Universe is expanding

that is, **space itself is expanding**!

recall: this is possible, since GR says spacetime is dynamic!

But this implies that

- all galaxies receding from all others
- and they do so because they are "riding" on points within an expanding grid! imagine rubber graph paper being stretched!
 bold, strange idea!

transparency demo: photocopy universe Q: implications?

00

Expansion and Cosmology

All of cosmology is nothing more or less than the evolution of a system that is

- homogeneous
- isotropic
- expanding
- \star much of cosmology amounts to imagining a box
 - filled homogeneously with galaxies (today) or atoms/particles (in the early Universe)
- with other identical expanding boxes on all sides and asking: *how do the contents respond as the box expands?*
- $^{\circ}$ \star to do this don't need to know if U. has finite or infinite volume! question is interesting but can distract and confuse

Describing Expansion

consider triangle defined by 3 observers at t_1 if homogeneous and isotropic expansion at any later time t_2 , new triangle *must always be* "similar to" original triangle i.e., have same "shape" – same angles, ratios of sides *Q: why?*

similar \rightarrow ratio C/B always the same so

$$\frac{r(t_1)}{s(t_1)} = \frac{r(t_2)}{s(t_2)} \tag{1}$$

rearrange:

$$\frac{r(t_2)}{r(t_1)} = \frac{s(t_2)}{s(t_1)}$$
(2)

cosmo principle \rightarrow triangle *must be* similar: if stretched more in one direction \rightarrow expansion not isotropic there would be a preferred direction

since for any triangle at any two times t_1, t_2

$$\frac{r(t_2)}{r(t_1)} = \frac{s(t_2)}{s(t_1)}$$
(3)

then these ratios must have a universal (triangle-indep) value! and *any* length ℓ changes with time so that

$$\frac{\ell(t_2)}{\ell(t_1)} = \frac{a(t_2)}{a(t_1)}$$
(4)

where a(t) must be universal scale factor measures stretching of space due to expansion

12