Astro 350 Lecture 28 Oct. 31, 2011

Announcements:

- Discussion Question 8 due Wednesady
- HW 8 due Friday Hints for Q2: in *static* U, a(t) = constant = 1 always! and $\rho = \text{constant}$ always and everywhere

Recall: lifestyles in an expanding universe

- cosmic expansion: all distances grow as $r(t) = r_0 a(t)$ $\rightarrow a(t)$ encodes cosmic expansion history
- but how do we know what a(t) is?

Friedmann equations

cosmic acceleration
$$= \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right)$$
 (1)
cosmic expansion rate)² $= H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2}$ (2)

н

Solving for the History of the Universe

Friedmann gives expansion rate

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2} \tag{3}$$

in terms of cosmic ingredients

Strategy:

- \star know scale factor $a(t_0) = 1$ today
- \star Friedmann tells how a changes (that's H)
- * use Friedmann to "run movie backwards/forwards" and find a(t) for all times tbut this *is* enough to work out cosmic history
 - e.g., temperature, densities at all cosmic times

Ν

Q: what information needed to solve for *H*?

Friedmann Ingredients:

- **1**. Need (constant) value of K
- 1. Need (total) cosmic density

 $\rho_{total} = \rho_{ordinarymatter} + \rho_{dark matter} + \rho_{radiation} + \cdots (?)$ (4) \rightarrow need cosmic ingredients, and how density of each changes with cosmic scale factor

Densities

matter = stuff that moves slowly compared to c

non-relativistic: $v \ll c$, $kT \ll mc^2$

if not matter produced/destroyed Q: how could it be created/destroyed?

then mass density $\rho = M/V \propto 1/V \propto a^{-3}$ so matter density $\rho_{matter} = \rho_{matter,0}a^{-3}$

radiation = stuff moving at or near speed cin extras today: show that radiation density $\rho_{rad} = \rho_{rad,0}a^{-4}$

4

Cosmic Crystal Ball: Solving Friedmann

Fried. $\rightarrow a(t)$ evolution but need to know how ρ depends on a \rightarrow the evolution U. depends on what's in it!

```
Simplified "toy model" – matter-only universe:
when \rho \approx \rho_{matter} = \rho_{ordinary matter} + \rho_{dark matter}
includes (and is mostly!) dark matter
and K = 0 (or \rho term \gg K term):
"matter dominated U"
```

Solution method (for technorati): $H \propto \sqrt{\rho} \rightarrow \dot{a/a} \propto a^{-3/2}$ $a^{1/2}da \propto dt \Rightarrow a^{3/2} \propto t$ and $a \propto t^{2/3}$ and we always put today's value $a(t_0) = 1$, so $a_{\text{matter-dom}}(t) = (t/t_0)^{2/3}$

Huge! Gives (a possible) history of universe!

CЛ

A Matter-Only Universe

in this model (and only this model): $a(t) = (t/t_0)^{2/3}$

in this model:

Q: What is the fate of the universe? what happens as $t \to \infty$?

• can solve $H(t) = \frac{\dot{a}}{a} = \frac{2}{3} \frac{1}{t}$ Hubble "constant" changes with time!

Q: what is behavior of *H* over time?

- Q: what does this imply for evolution of the U?
- *Q*: what does this mean physically?

matter-only fate: $a \propto t^{2/3}$, so after a long time when $r \to \infty$, then $a \to \infty$: expand forever!

but: expansion slowing \rightarrow U. decelerating gals: outward momentum opposed by inward gravity

evaluate matter-only expansion today

$$H_0 = \frac{2}{3} \frac{1}{t_0}$$
 and so $t_0 = \frac{2}{3} \frac{1}{H_0} = \frac{2}{3} t_{\text{Hubble}}$

(5)

predict t_0 from H_0 : "expansion age" related to Hubble time—but not equal to it

We already know $t_{Hub} = 13.7$ billion years = 13.7 Gyr

which gives expansion age t₀ = 9.1 Gyr
 yet we also know: oldest stars (globular clusters)
 have ~ 12 - 14 Gyr age
 Q: what's going on?

More to the Picture Than Meets the Eye

What just happened?

We assumed we had a universe only made of *matter* a *"what you see is what you get"* universe

but this makes many testable predictions

- including age of U vs Hubble const
- measured both ofthese, found matter-only prediction false!

So: we *do not live* in a matter-only universe!?! Top on cosmologist's to-do list: figure out what's going on!

00

Q: how?

Studying the History of Cosmic Expansion

Recall: Friedmann sez that at any cosmic "moment" ("epoch" – measured by time t and/or redshift z) the cosmic expansion H directly related to cosmic contents ρ

So: imagine we could measure expansion rate Hat many different epochs, finding H(z) at many z

this determines the cosmic expansion history then Friedmann \rightarrow density history, e.g, $\rho(z)$

 \bigstar cosmic motion \leftrightarrow cosmic contents

Q

- \star expansion measures cosmic density!
 - * can compare with expectations if $\rho = \rho_{matter} + \rho_{radiation}$

Expansion Archaeology

Goal: measure expansion rate at past times

Strategy:

recall Hubble's law v(t) = H(t) r(t): always true but as you look at distant objects light travel time becomes large ("time machine effect") \rightarrow no longer probing expansion today, when rate is $H(t = t_0) = H(z = 0) = H_0$ but rather expansion in past H(high - z) \Rightarrow Can use this to get expansion history key requirement: need distance r to high-z objects

$$\stackrel{,}{\bigtriangledown}$$
 Q: what techniques are available?

Supernovae and Cosmodynamics

goal: measure expansion out to high z

key tool: standard candle \equiv object of known L measure flux F, then $d_{lum} = \sqrt{F/4\pi L}$

need objects which:

- have fixed L indep of z, environment
- can see at high $z \rightarrow$ high $L \rightarrow$ supernova explosions
- Massive stars → SN: Type II bright, but: L varies w/ mass, metallicity X bad idea!
 SN Type Ia: exploding white dwarf WD → fixed mass of ⁵⁶Ni (radioactive) → ⁵⁶Fe

```
decay sets L(t) \rightarrow std candle!
```

```
www: SN 1994D
```

11

iClicker Poll: Past Expansion Rate

in the real universe, with gravity

How should the expansion rate change with time?

A expansion slows with time \rightarrow faster in past

- **B** expansion constant with time \rightarrow same in past
- С

expansion speeds up with time \rightarrow slower in past

SN Ia and Expansion History

SN Data: distance indicator $(d_{lum}(z)$ "luminosity distance") traces expansion history $H(z) = \dot{a}/a$

- but expansion $H = \frac{\text{rate of change in } a}{\text{so variation in } H \rightarrow \text{change in "velocity"}}$: a kind of "velocity"
- *H* history measures cosmic acceleration

expectations: acceleration =
$$\ddot{a}/a = -\frac{4\pi G}{3}\left(\rho + 3\frac{P}{c^2}\right)$$

 $\Rightarrow \ddot{a} < 0$ gravity slows expansion

Pop fly Analogy

13

galaxies moving apart today \leftrightarrow upgoing ball would coast forever, but gravity attractive slowing galaxies \leftrightarrow slowing ball \rightarrow faster in past

Distant Supernovae: The Verdict

SN data:

H(z) smaller in the past (high z and small t)

- \Rightarrow H(z) **increases** with time!
- $\Rightarrow \ddot{a} > 0!$

accelerating expansion!

www: SN Ia data

2011 Nobel Prize in Physics

given to Saul Perlmutter, Brian Schmidt, and Adam Riess www: 2011 Nobel Prize

for the discovery of the accelerating expansion of the Universe through observations of distant supernovae

Q: why is this Nobel-worthy?

Q: notice what the prize does not mention? that is, what does their work not tell us?

15

An Accelerating Universe: Implications

Recall: expected deceleration because ordinary matter (even dark matter!) has gravitational attraction But: found acceleration → something present which has gravitational repulsion! "antigravity"!?! ...and enough of it to overwhelm the attraction of ordinary matter!

Pop Fly Analogy

Universe is accelerating

 \rightarrow galaxies faster as they move apart

so upgoing ball would speed up, zoom away from view!!

In more detail: SN Ia: $\ddot{a} > 0$, but Friedmann sez $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3\frac{P}{c^2} \right)$ $\Rightarrow \rho + 3P/c^2 < 0$ $\Rightarrow P < -3\rho c^2 \text{ negative pressure!?!}$

Physical "interpretation":

recall: $F = \text{pressure} \times \text{area } diagram: piston, A, P, F$

P > 0: outward force (e.g., ideal gas)

P < 0: inward force (e.g., elastic)

Radiation Density and Cosmic Expansion

radiation = stuff moving at or near speed c

relativistic: $v \sim c$, $kT >> mc^2$

if particles not created/destroyed,

then total number const

• number density $n = N/V \propto a^{-3}$

energy density $\varepsilon_{\gamma} = E/V = E_{\gamma}n_{\gamma}$ where E_{γ} is the average energy of *one* particle but we saw for photons: $E_{\gamma} \propto 1/a$ $\rightarrow \varepsilon_{\gamma} \propto a^{-4} \propto T^{4}$ if thermal but mass-energy equivalence $E = mc^2$ says that

$$m = \frac{E}{c^2}$$
(6)

$$\frac{m}{V} = \frac{E}{V}\frac{1}{c^2}$$
(7)

$$\rho = \frac{\varepsilon}{c^2}$$
(8)

and so

$$\frac{\rho_{\rm rad} = \varepsilon_{\rm rad} / c^2 \propto a^{-4}}{(9)}$$