Astro 350 Lecture 32 Nov. 9, 2011

Announcements:

- HW 9 due next time
 Typo! Q1(e): should read "cannot explain"
 Office hours: after class today
 TA: tomorrow 2-3pm
- Discussion Question 9 due today
- Hour Exam: grading continues!

Last time: finished with the future onward to the past!

A Puzzling Measurement

Spring 1965:

N

- Rev. Martin Luther King Jr leads march on Selma AL
- Beatles play Shea Stadium
- astronomers Arno Penzias & Robert Wilson
 were using radio telescope to study interstellar gas clouds
 www: Penzias and Wilson at Bell Labs

made careful measurements, noticed that when pointing radio telescope ("horn") away from clouds signal readout dropped, but did *not* go to zero no matter where pointing "off source"

Q: what are possible explanations?

What is all this noise?

Bell Labs radio telescope reads out nonzero signal even when pointed away from any sources

Possibilities:

Problem with telescope?

• instrumental noise?

Penzias & Wilson carefully checked system characterized noise-too small to explain signal

 contamination/damage to antenna? scraped off pigeon droppings

Result: after careful checking

 $^{\omega}$ Penzias & Wilson could not explain away signal → forced to conclude: Signal is real!

Penzias & Wilson reported their result in 2-page scientific paper www: their paper devoted to showing how they checked antenna noise and which made not attempt to interpret signal

mysterious radio signal found to be :

- isotropic (as far as they could measure) *Q: meaning?*
- unchanging with seasons *Q*: which implies what?

Q: what other properties of signal would be useful to measure?

Mysterious Radio Signal

mystery signal does not change with seasons \rightarrow not related to Earth, or solar system \rightarrow comes from our Galaxy or beyond

in fact: all other know sources of radiation observed to lie *in front* of this mystery signal

- signal comes from great distance: cosmic
- signal is **background** to all else

signal found in radio: electromagnetic radiation \rightarrow essential to measure *spectrum* quickly done, found to have blackbody form! *Q: what's that?* peak around $\lambda_{max} \approx 1$ cm: **microwave** which corresponds to temperature $T \approx 3$ K *Q: hot or cold?*

Q: what does this all mean?

CЛ

Cosmic Microwave Background Radiation

mystery signal: cosmic microwave background radiation = **CMB** Universe today filled with radiation

- isotropic had to be! confirms cosmological principle!
- blackbody = thermal = has temperature

CMB temperature: present measurement

$$T_0 = 2.725 \pm 0.001 \text{ K} \tag{1}$$

note precision!

cosmic temperature known to within better than 0.05%!

spectrum: blackbody www: CMB spectrum (FIRAS)
purely thermal (so far): www: CMB spectrum residuals

σ

CMB: enormously important cosmological clue and goldmine! need to figure out what it means

The Early Universe

For the rest of the course: look back to the past try to develop (and test!) understanding of what happened

Strategy: run the movie backwards

Inputs:

- known (or suspected) present contents of U
- known (or suspected) laws of nature

Output:

- "pre" dictions about the past behavior
- and consequences that are observable today
- \neg Q: present cosmic contents?
 - Q: how would each act in early U?

Looking Back

Cosmic Inventory: Universe today composed of

- \bullet radiation: blackbody, $T\sim {\rm 3~K}$
- normal matter: mostly H and He
- dark matter: weakly interacting Q: why?
- dark energy: constant density (?)

Run movie backwards: in the past

 $\triangleright T$ higher

00

▷ radiation, matter hotter, denser

```
▷ dark energy unimportant (?)
```

normal matter: well studied in the lab! known properties for different ρ , T \rightarrow use known physics to deduce history of matter and radiation!

Temperature and Atoms

Universe has temperature! cold today, hotter in past

For a gas of atoms, as temperature goes *up* What is affect on average atom?

- A hotter = higher average speed, higher average energy
- B hotter = lower average speeds, higher average energy
- C hotter = higher average speed, lower average energy
- \circ **D** hotter = lower average speed, lower average energy

The History of Atoms

Today:

- normal matter* (i.e., made of atoms) is mostly gas mostly ($\sim70\%$) hydrogen, with $\sim28\%$ helium, 2% ''metals''
- \bullet cosmic temperature $T\approx$ 3 K
- cosmic average density very low: $ho_{\rm crit} \approx 10 m_{\rm hydrogen}/{\rm cubic}$ meter
- *Q:* how do atoms behave in these conditions?
- *Q*: in past, higher $T \& \rho$ -what transition expected?
- Q: what sets transition temperature?

*Tech lingo: "made of atoms (really, protons & neutrons)" = "baryonic" $\stackrel{_{\scriptstyle \leftrightarrow}}{_{\scriptstyle \leftrightarrow}}$

The Atomic Age

laboratory atomic physics:

11

in atoms, electrons attracted, bound ("stuck") to nuclei

- takes energy input to rip apart, unbind
- well-defined "binding energy" needed to tear apart

So: in gas with particle energy < atomic binding energy i.e., $kT < E_{\text{bind},\text{atoms}} \sim 1 \text{ eV} \ (T \lesssim 10,000 \text{ K})$ \Rightarrow electrons bound to nuclei: atoms! i.e., electrically neutral gas particles

but if particle energy > atomic binding energy i.e., kT > 1 eV, T > 10,000 K atoms ripped apart \rightarrow gas of free e^- , nuclei ionized "plasma" of charged particles www: laboratory hydrogen plasma more familiar plasma examples: flames, neon lights So the history of atoms in cosmos is:

- early Universe (T > 10,000 K) ionized no atoms could survive-torn apart
- but as cooled, became neutral atoms were stable, *had* to form
- so *must* have been a time of transition: key moment! the epoch of (re)combination plasma "condensation" → birth of atoms!

Procedure:

- follow physics of expanding, cooling H gas in bath of thermal radiation Q: what is λ /color?
- \bullet through ionized \rightarrow neutral transition
- then ask ourselves: what observable traces ("fossils")
- would this leave behind? ("cosmic archæology") Q: guesses?

Thermal Radiation in the Early Universe

Recall: light \leftrightarrow heat connection namely: "glow" of object at T = blackbody radiation peak emission (color): $T \propto 1/\lambda_{peak}$ but recall: photons have $E_{\gamma} \propto 1/\lambda$, so $T \propto E_{\gamma}$ (check!)

What color was the cosmic thermal glow? When Universe $T \sim few1000$ K, similar to $T_{surface,\odot}$ \rightarrow peak emission is visible to eye! \rightarrow you could have seen cosmic radiation (but better wear the asbestos suit...) Key issue:

• how do the thermal photons interact with the hydrogen?

In particular:

• how does light respond to a neutral vs ionized gas?

Demo: pass light thru flame

Q: flame region looks brighter? darker? same as rest of screen?

Q: implications for cosmic recombination?