Astro 350 Lecture 35 Nov. 16, 2011

Announcements:

- HW10 due next time
- Discussion Question 10 due today

Last time:

- CMB summary-big bang works well back to t = 400,000 years
- press on to even earlier times: 1 second!
- strategy: extrapolate using known properties of matter

The Cosmic Nuclear Age

in early Universe, strong/nuclear force important

- Q: what were cosmic ingredients then?
- *Q*: what transition(s) expected?
- Q: what physical effects important? cosmo? microphysical?
- Q: what fossils might be left over?
- Q: how could we observe them?

HINT: States of Matter		
matter state	basic ingredient	approximate temperature
neutral gas, liquid, solid		$T \lesssim few imes$ 1000 K
ionized gas: plasma	free electrons, ions=nuclei	$few imes$ 1000 K $\lesssim { m T} \lesssim 10^{10}$ K
"nucleon plasma"	free electrons, free "nucleons" n,p	$T\gtrsim 10^{10}K$

Primordial Nucleosynthesis

Primordial nucleosynthesis, a.k.a. Big bang nucleosynthesis (BBN): production of lightest elements H, He, Li in the early U.

extrapolate expanding U w/ matter, radiation back to $t \sim 1 \text{ sec} \rightarrow \text{U}$ is giant nuke reactor!

basic story: transition from "ionized" free n and pto "neutral" bound nuclei, largely ⁴He

Primordial Nucleosynthesis Initial Conditions

time t < 1 sec, temp $T > 10^{10}$ K = 10 billion degrees

radiation

- "CMB" photons now gamma rays!
- also a sea of cosmic neutrinos!

radiation density huge! $\rho_{\rm radiation} \gg \rho_{\rm matter}$ opposite of situation today

"radiation-dominated era"

matter

- ordinary (known) matter: only n, p, and e collisions too violent for complex nuclei and certainly much too violent for atoms
- dark matter: must be around, but weakly interacting

dark energy

4

must also be around, but if Λ -like, unimportant

iClicker Poll: Cosmic Fusion

primordial nuke: transition from free n, p to bound nuclei, through a series (chain) of reactions

Starting from p and n only, which nucleus is made first?

A deuterium:
$$d = np$$

C helium-4:
$${}^{4}\text{He}=\overline{nnpp}$$

^o D lithium-7: ⁷Li=
$$3p, 4n$$

Primordial Nucleosynthesis: Element Production

as the universe expands and cools,

n and p collisions weaker than $d=\boxed{np}$ binding

 \rightarrow at last d can survive: $n + p \rightarrow d$

then can combine d with $n,\ p,$ and d to make heavier things

```
www: reaction network
```

flow \rightarrow most stable (tightest binding) = $\begin{bmatrix} 4 & \text{He} \end{bmatrix}$ essentially all $n \rightarrow ^4$ He BBN result: 24% of baryons in He, leftover $p \rightarrow$ H (76%) small traces of unburnt D, ³He, ⁷Li: amounts depend strongly on density of nuclei ("baryons") www: Schramm plot

σ

Nothing heavier than lithium made-why?

Nuclear Freeze

nothing heavier than Li:

• no stable nuclei with masses 5,8 \Rightarrow don't make anything from $p + {}^{4}\text{He}$ or ${}^{4}\text{He} + {}^{4}\text{He}$

cooling universe → weaker collisions
 but combining nuclei with large charge
 requires large energy to overcome electrical repulsion

result: nuclear reactions shut down after lithium production ...and not even much of that!

"freezeout of strong interactions"

7

BBN Predictions: Executive Summary

Q: what are main predictions? qualitatively, quantitatively?

Q: where, when do they apply?

Q: what predictions "robust"/unavoidable?

Q: what would be involved in testing the predictions?

Q: what would it mean if BBN predictions confirmed? if not?

Q: what assumptions went into the calculation? ("Standard BBN")

Q: i.e., regarding dark matter? dark energy? neutrinos? additional element ary particles?

BBN: Observations

to test BBN: measure primordial abundances

look around the room–not 75% H, 25% He. *Q: is this a problem? Why not?*

matter in solar system: mostly in Sun–mostly H, then He but: still have heavy elements *Q: is this a problem? Why not?*

Q: so how test BBN? What is the key practical issue?
Q: when in cosmic history do we expect
the first "complications"?

BBN: Observations–Idealized

The past isn't dead. It isn't even past.

-- Cosmologist William Faulkner

BBN theory: after the first three minutes the universe filled homogeneously with H, He, and a little Li → these remain to this day as "fossils" of nuclear reactions in the early universe → evidence from the early U is all around us!

BBN: Observations–Hard Reality

BBN theory: universal composition after ~ 3 minutes, $z \sim 10^9$ observations: abundances in real astro systems, redshifts $z \sim few$

the first non-BBN nucleosynthetic processing: \rightarrow when first stars turn on www: circle of life

problem: stars change lite elt abundances \rightarrow "pollution"

the solution:

Q: how to address this problem?

Q: if can measure abundances in a system, can you unambigu-

i ously tell that stars have done some polluting?

Q: how to tell observationally which systems least polluted?

stars also make heavy elements

stellar cycling: metals \leftrightarrow time \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive at 0 metals \rightarrow primordial

Helium-4

He atoms: tightly bound atoms, hard to excite electrons \rightarrow need relatively high energies to make observable lines \rightarrow need hot environment with strong collisions \rightarrow superheated gas in environment of massive, hot stars

need hot, metal poor gas: → metal-poor, dwarf irregular galaxies www: I Zw 18 **Transp:** *He emission lines*

 $Y = \rho(^{4}\text{He})/\rho_{\text{baryon}}$ and $Z = \rho(\text{metals})/\rho_{\text{baryon}}$ \Rightarrow correlated What correlation do you expect?

 $\stackrel{ti}{\sim}$ **Transp:** *Y* vs *Z Q: significance of features?*

Helium-4 Data: Trends and Implications

Data best fit by

14

$$Y = Y(Z) \simeq \frac{Y_0}{\Delta Z} + \frac{\Delta Y}{\Delta Z} Z$$
(1)

slope $\Delta Y/\Delta Z$: stellar nuke (avg stellar "helium per metal" output) intercept $Y_0 = Y_p$: cosmology (primordial He!)

combining all data: infer primordial abundance

$$Y_p = 0.249 \pm 0.009 \tag{2}$$

i.e., observe 24.9% of ordinary (baryon) mass to be in 4 He

Assessing BBN: Theory vs Observations

BBN Theory:

all elements depend on baryon density only free parameter in standard ("vanilla") calculation \Rightarrow for each $\rho_{\rm B}$ value, 4 lite elements "overconstrained"

at any moment, how many values of ρ_{B} in U? **Transp:** Schramm plot

Lite Elt Observations:

1 element: find ρ_{B}

more elts: each picks an $\rho_{\rm B}$

 \Rightarrow do they agree? test of BBN!

15

Combine observations (+ errors!) observed light elements agree with theory (and each other!) if $\Omega_{\rm B} = \rho_{\rm B}/rho_{\rm crit}$ in range

$$0.024 \lesssim \Omega_{\mathsf{B}} \lesssim 0.050$$
 (3)

recap: extrapolated big bang to t = 1 s, predicted lite elts kinda amazing: not only qualitative agreement ("lotsa helium") but even detailed quantitative agreement with observations! Cosmo bragging rights: BBN is earliest probe!

BBN: Implications

Qualitatively

extrapolated big bang to t = 1 s predicted lite elts \rightarrow agreement with observations big bang working well back to 1 sec!

Quantitatively

17

observed lite elements select $\eta = n_B/n_\gamma$ $\Rightarrow 0.024 \lesssim \Omega_B \lesssim 0.050$

- 1. $\Omega_B \ll$ 1: baryons don't close the U.
- 2. $\Omega_{lum} \sim 0.007 \ll \Omega_B$

baryonic dark matter hot (10^{6-7} K) intergalactic gas?

3. $\Omega_{matter} \approx 0.3 \gg \Omega_{B}$:

non-baryonic dark matter

Also: BBN sensitive to particle physics

The universe is the poor man's particle accelerator.