> Astro 350
> Lecture 4
> Aug 28, 2011

Announcements:

- Discussion Question 1 due Wednesday nite
- HW1 due at start of class Friday
turn in paper copy, but can \& should upload on Compass online submission gives record if question of HW loss
- register your iClicker by next time!
follow link on course page
Last time:
- geocentric cosmology

Q: which is what?
Q: why would anyone believe this?
Q: who was Ptolemy? What is the Ptolemaic system?

- Copernicus \& heliocentric cosmology

Q: what is an AU?

Copernicus: What's New and What's Not

- planets still on spheres
- Copernicus still used epicycles!
- predictions not better than in Ptolemy's model
\rightarrow geometrically equivalent Q : meaning?
- Copernicus' model not generally accepted and Ptolemaic-Copernican disagreement though to be metaphysical, unanswerable question

Q: so how do we decide which is right?

Tycho Brahe 1546-1601: Danish Astronomy Extraordinare

in youth: observed "nova stella" (supernova) www: Tycho sketch
\rightarrow change observed in heavens \rightarrow corruptible!
observed Sun, Moon, planets for 20 years: careful, accurate data but not a good number cruncher
\rightarrow like any good professor: made grad student do the work!
Johannes Kepler 1571-1630: Harmony of the Worlds
Analyzed Tycho's data for 20 years(!), especially Mars motions used heliocentric model with circles
but observations didn't quite agree
a small error (few arc min!) remained...took seriously
\rightarrow after trial \& error:
completely \& accurately described planet orbits
Q: Kepler's Laws?

Kepler I: Law of Ellipses

each planet's orbit is an ellipse with the sun at one focus

\perp

$$
L_{1}+L_{2}=\text { constant }
$$

Ellipse Anatomy

- two foci
- semi-major axis a
- focal length c
- semi-minor axis

$$
b=\sqrt{a^{2}-c^{2}}
$$

any ellipse fully characterized by:
G
a and eccentricity $e=c / a$
Q : what do we get for $e=0 ? e=1 ?$

Kepler I: orbit is ellipse with sun at one focus

Orbit anatomy
aphelion: farthest point from Sun perihelion: closest point to Sun

Q: what is aphelion distance in terms of a and e ?

$$
\begin{equation*}
r_{\mathrm{ap}}=a+c=a+a \frac{c}{a}=(1+e) a \tag{1}
\end{equation*}
$$

の Q: If the Sun's at one focus, what's in the other focus?
Q: What does Kepler I not say about orbits?

At the other focus: nothing! (sorry!)

Note: Kepler I only gives orbit shape
but says nothing about how orbit evolves in time \rightarrow need more info to fully describe orbit, hence...

Kepler II: Law of Equal Areas

a straight line from the planet to the sun sweeps out equal areas in equal times
diagram: sketch areas
note that this amounts to telling about speed of planet Q: where fastest? slowest?
www: area animation

Q: This still doesn't fully characterize an orbits-why not?

Kepler I gives orbit shape in space Kepler II gives orbit evolution over time
but haven't yet connected the two:
how does spatial character (e.g., semimajor axis a) relate to time character (e.g., period P)?

Need one last law...

Kepler III: The Mighty Equation

period P and semi-major axis a are related:

$$
P^{2} \propto a^{3}
$$

$\Rightarrow P^{2} / a^{3}=$ const, holds for all planets, with same constant and since must hold for Earth:

$$
\begin{equation*}
P_{\mathrm{yrs}}^{2}=a_{\mathrm{AU}}^{3} \tag{2}
\end{equation*}
$$

Q: ok for earth?
where P written in years, a in AU

Very powerful! e.g.:
Asteroids exist with orbits inside 1 AU (and some cross 1 AU!!)
${ }_{\circ}$ www: inner solar system objects--in real time!

iClicker Poll: Kepler III

Kepler III: $P_{\mathrm{yrs}}^{2}=a_{\mathrm{AU}}^{3}$
Consider an asteroid with an orbit entirely outside 1 AU Is its period longer or shorter than a year?

A $P>1$ yr, no matter eccentricity e

B $P<1 \mathrm{yr}$, no matter what e

C can't answer without knowing e

Kudos to Kepler

Several points worth noting...

* An amazing discovery-mathematics underlies the workings of the cosmos!
* Orbits have a simple geometry
...but not simplest: ellipse not circle
* Kepler's laws remain (almost) perfectly accurate to this dayindeed, in slightly generalized form will show up in many (most!) situations where motions are controlled by gravity
* Yet note what we still don't have:
an understanding of why Kepler's laws hold
\rightarrow that is, what is the mechanism that makes
planets move this way
...for that, need to wait for Kepler's successors...

Galileo Galileī: Astronomer

First to use telescope in Astronomy
www: Galileo shows scope to Duke
contributions:

- mountains on the moon
- moons of Jupiter
- sunspots

These are bad for Ptolemy (but maybe not deadly) Q : how?

