Astro 350 Lecture 5 Aug 30, 2011

Announcements:

- Discussion Question 1 due tonight!
- HW1 due next time, at start of class turn in paper copy, or upload on Compass online submission gives record that you did it Office Hours: Instructor-today, right after class TA: Thursday, 2-3pm, Astronomy Building Room 133
- register iClicker, link on course page

Last time:

• Kepler: 3 laws describe planetary motion Q: T-shirt version?

Today:

 \vdash

theories of motion, of gravity, and of motion due to gravity

Galileo: Astronomer

Crucial, decisive experiment:

• phases of Venus

N)

www: Venus phase animation

observations contradicted Aristotle supported Copernicus "paradigm shift" (Kuhn) radical change in outlook/conceptual framework

Note: Galileo put on trial, forced to recant heliocentrism

- his work, Copernicus, Kepler banned until 1832
- official semi-apology ("mistakes were made") 1992

complex: crackdown as much political as theological shows view of the world people had

- 1. really not at all obvious that sun at center
- 2. the paradigm shift difficult, challenged outlook

The Science of Motion

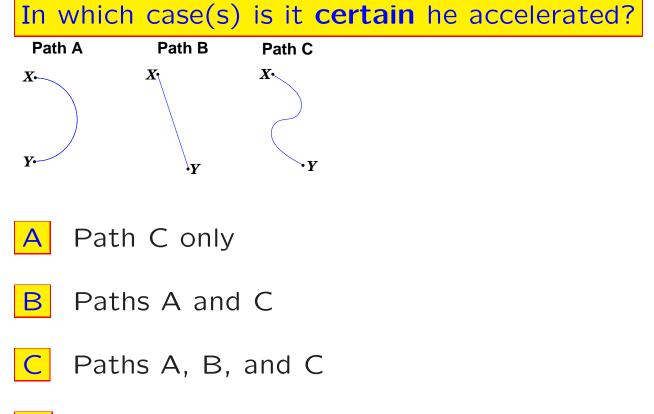
Description of Motion

want precise language not just for planets but all objects

Speed: rate of motion speed = $\frac{\text{change in distance}}{\text{change in time}}$ mathematically: v = d/t (more technically v = dx/dt) so: d = vt distance traveled = speed × travel time Fine Print: valid when speed constant = not changing

Velocity: both speed and direction of travel ex: if 10 mi East in 1/2 hour, velocity = 10/(1/2)= 20 mph East

4


Q: can two objects have same speed, different velocity? Q: does car speedometer measure speed or velocity? Q: turn corner in car, speedometer pegged at 20mph–whassup? Acceleration: *change* in speed *or* direction of motion speed up rate or slow down rate ex: slam on gas, brakes in car

Q: what kind(s) of motion(s) have zero acceleration?

iClicker Poll: Acceleration

young James T. Kirk (remake version) drives from point X to Y his motorcycle speedometer readings are unknown

maybe constant, maybe not

if speed kept constant, all paths can be unaccelerated

Galileo: Physicist

studied motion of objects on earth two important cases:

Special Motion I: **"Free Body"** moving with *no* external influences (including friction, gravity) \rightarrow moves in straight line, constant speed \rightarrow **constant velocity**

Galileo finds this is the "**natural motion**" of an object – keeps constant speed & direction unless something happens to change this

Contrary to Aristotle: natural motion is to come to rest Q: Why did Aristotle think this?

Special Motion II: "Free Fall" motion due to gravity only

www: Tower of Pisa

Demo: Pisa: heavy, light objects *Demo*: Pisa: ball, paper sheet *Q: in free fall, is velocity constant?*

even if fall in straight line, speed changes \rightarrow gravity causes acceleration \rightarrow same acceleration for all objects

independent of size, mass

Einstein called this independence the "equivalence principle" crucial in his invention of General Relativity

Note: Galileo *describes* motion (mathematically) but to *explain* with a theory fell to...

ဖ

Isaac Newton 1643-1727

Why Kepler's laws for planets? Are they special? Can we understand using general rules for all motion?

New concepts

• mass: "amount of stuff" measure in kg \rightarrow 1 kg of anything has the same mass

• force: push or pull on object can have more that one acting, in different directions

net force: *total* of all forces acting.
if forces unbalanced, net force is present

Newton's Laws of Motion

motion & forces linked

Newton I. "Inertia"

- an object at rest stays at rest if no forces act on it
- an moving object goes in straight line w/ const speed if no forces act on it

i.e., "free body" as per Galileo

Newton II: "F = ma"

- a net force acting on an object causes it to accelerate
- $a \propto F$ and $a \propto 1/m$ Q: examples? so $a \propto F/m$, or F = ma

Examples:

 $\frac{12}{2}$

- ball on table, at rest Q: how many forces? net force?
- circular motion: speed const, yet force applied Q: what's up? diagram: circular motion: velocity, force, force-free path

2nd Law a mathematical machine which predicts future! *Q: how? where's the fortunetelling in* F = ma?*Q: what information needed to do this?*

Fortunetelling (and Archæology!) with Newton II

input: at initial time, need to know/specify

- object mass m
- \bullet all of forces acting on \boldsymbol{m}
- \Rightarrow find *net force F*

Result: find particle path in future!

 $\overline{\omega}$ But also: can mathematically "run the move backwards" and predict the past history as well!

Newton III: "Action-Rection"

a rule about how forces behave between two objects

if 2 bodies interact: the force exerted by object 1 on object 2 is equal and opposite to the force exerted by object 2 on object 1

Q: application–you standing still Q: Jump shot