> Astro 350
> Lecture 6
> Sept. 2, 2011

Announcements:

- HW1 due now
- HW2 available, due in 1 week
- Discussion Question 2 posted, due next Wednesday

Last time:

- Galileo: special cases of motion-free bodies, free fall Q: what are they defined as? what are the motions like?
- Newton's Laws of Motion

Q: Laws I and II?

- Q: how does Newton II enable fortunetelling and archæology

Q: what information do you need to predict future \& past?

Fortunetelling (and Archæology!) with Newton II

input: at initial time, need to know/specify

- object mass m
- all of forces acting on m
\Rightarrow find net force F
turn the math crank: $a=F / m$
\rightarrow find acceleration $=$ change in velocity
\rightarrow use this to find new position, new velocity at at moment a little later
\rightarrow at new time and position, find new net force
...lather rinse repeat

Result: find particle path in future!
But also: can mathematically "run the move backwards" and predict the past history as well!

Newton III: "Action-Rection"

a rule about how forces behave between two objects
if 2 bodies interact:
the force exerted by object 1 on object 2
is equal and opposite to
the force exerted by object 2 on object 1

Q: application-you standing still
Q: Jump shot

Explaining Kepler

Kepler I: planets move in ellipse
this is curved path
direction of motion changing

So: velocity changes
\rightarrow planets accelerate
\Rightarrow need force
gravity
diagram: Sun, planet

- label force free motion, deflection due to gravity, actual motion

Universal Gravitation

Newton's Theory: combined all of the following ideas

- gravity acts beyond earth
- gravity directed on line connecting centers of bodies
- gravity strength decreases with distance
- all bodies are sources of gravity
\Rightarrow everything attracts everything else

Can summarize mathematically compact way:
for 2 bodies, masses m_{1}, m_{2}
centers separated by distance R
gravitational force: $\quad \begin{array}{ll} & F \propto m_{1} \\ & F \propto m_{2} \\ & F \propto 1 / R^{2}\end{array}$
together:

$$
\begin{equation*}
F=G \frac{m_{1} m_{2}}{R^{2}} \tag{1}
\end{equation*}
$$

where G is just a fixed, constant number, same always:

$$
\begin{equation*}
G=6.7 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}} \tag{2}
\end{equation*}
$$

- Q: how is equation similar/different from list on previous slide?
- gravity force $F \propto 1 / R^{2}$: "inverse square law" Q : force on satellite $2 \times$ as far from earth center as us?
satellite $2 \times$ as far from earth center as we are \Rightarrow Force is $1 / 2^{2}=1 / 4$ as strong, i.e., 4 times weaker
why? $F(R) \propto 1 / R^{2}$ for any R
so: compare at $R=R_{e}$ (earth radius) and $R=2 R_{e}$
proportional means that

$$
\begin{equation*}
\frac{F\left(2 R_{e}\right)}{F\left(R_{e}\right)}=\frac{1 /\left(2 R_{e}\right)^{2}}{1 / R_{e}^{2}}=\frac{1 /\left(4 R_{e}^{2}\right)}{1 / R_{e}^{2}}=\frac{R_{e}^{2}}{4 R_{e}^{2}}=\frac{1}{4} \tag{3}
\end{equation*}
$$

Gravity and Planet Motion

Newton II: input is force, output is motion For planets around Sun, force is gravity (free fall!)

So: What is motion when $F=G \frac{m_{\text {Sun }} m_{\text {planet }}}{R^{2}}$?
Now just a math problem. diagram: sun, planet orbit, \vec{v}, \vec{F}

Newton II + Gravity: properties of predicted orbits

- orbit is ellipse, with sun at one focus
- equal areas in equal times
- $a_{\mathrm{A} U}^{3}=P_{\mathrm{yr}}^{2}$
actually better, more info: $a^{3}=G M_{\text {Sun }} P^{2} / 4 \pi^{2}$

So: Newton's laws + gravity force \rightarrow Kepler's laws ! theory agrees with observation!

Q: effect on planets of Sun's mass doubled?
Q: effect on planets of Sun's size doubled?

Note: only force on planet is gravity: free fall

$$
\begin{align*}
m_{\text {planet }} a_{\text {planet }} & =F_{\text {planet }}=G \frac{m_{\text {planet }} M_{\text {Sun }}}{R^{2}} \tag{4}\\
a_{\text {planet }} & =G \frac{M_{\text {Sun }}}{R^{2}} \tag{5}
\end{align*}
$$

free fall acceleration only depends on Sun mass $M_{\text {Sun }}$ and Sun-planet orbit distance R
\rightarrow independent of planet mass or size!
\rightarrow at same R, all objects accelerate same way
\Rightarrow equivalence principle pops out of Newton gravity! Woo hoo!
"Turning the Dials"

- double Sun's mass \rightarrow double acceleration \rightarrow faster orbits
- double Sun's size \rightarrow same mass \rightarrow no change in orbits

Testing Newton's Gravity

Moons of Jupiter: orbits obey Kepler's laws
\rightarrow Jupiter's gravity works like Sun's, Earth's
1830's: Uranus observed orbit did not follow predictions
of Newtonian solar system model
the death Newton's gravity?
Remember: have to agree with all data, not just some even one clear failure is enough to kill theory
e.g., Kepler and Mars: just a small discrepancy from circular but still had to throw out circular orbits
maybe...but also: maybe have not included all sources of gravity
\sharp maybe unknown object causes U's deviations
\Rightarrow a new planet?

iClicker Poll: Uranus Discrepancy

1830's Problem: measured Uranus orbit doesn't match predictions of Newtonian Gravity theory

Vote your conscience!
Which seems more likely to you?

A Newton's gravity theory correct, but not all gravity sources had been included

B Newton's gravity theory incorrect (or at least incomplete)

Q: what experiment/observation would tell which is right?
if unknown object, could predict where should be did this, looked, and in 1846...
Neptune found at right position-predicted by Newton's gravity
other more recent tests:

Binary Stars: two stars orbiting each other move in ellipses, obey Kepler's laws
www: binary star orbit
\rightarrow Gravity theory works outside solar system

Kepler described planet motion
Newton explained plant motion

- result from nature of gravity
- a complete, accurate, powerful theory

Copernican Revolution

the Earth is a typical planet one among many that orbit the Sun not the center of the solar system
...only the first of many such revolutions!

