Astro 350 Lecture 8 Sept. 9, 2011

Announcements:

- HW2 due now
- Discussion Question 3 due next Wednesday
- HW1 returned today
- HW3 available, due in 1 week

Last time: light = electromagnetic radiation Q: why is light "electromagnetic"? Q: why is light "radiation" ... Q: directly measurable properties of light?

Visible Light Revisited

Recall: visible light is only tiny part of full electromagnetic spectrum

	radio	infrared	visible	ultraviolet	X-ray	γ -ray
λ [m]	$> 10^{-3}$	$\sim 10^{-5}$	$(4-7) \times 10^{-7}$ m	$\sim 10^{-9}$	$\sim 10^{-11}$	$\sim 10^{-12}$

Visible Light

N

- wavelengths small on human scale (< 10^{-3} mm) but much smaller λ light exists!
- prisms & rainbows: sort light by λ
- longest visible λ : red light
- shortest visible λ : blue light
- \bullet order, in decreasing λ

red, orange, yellow, green, blue, indigo, violet think of Mr. "Roy G. Biv"

Heat and Light

hot objects glow

temperature-radiation connection

glow due to temperature: thermal radiation

color & brightness of thermal glow = spectrum & intensity:

depends on temperature ${\cal T}$

- hotter \rightarrow brighter
- color change: hotter \rightarrow bluer larger $T \rightarrow smaller \lambda_{peak}!$

Blackbody Spectrum

useful* to define an ideal substance: a perfect absorber of light: **"blackbody"** absorbs all λ , reflects none *Q: what would such a thing look like? Q: what are real substances almost like this? Q: what everyday object is nearly the opposite of this?*

blackbody absorbs radiation \rightarrow heats \rightarrow re-emits according to T"blackbody radiation" = thermal radiation spectrum depends only on Tdiagram: Flux F vs λ

perfect absorber of light: "blackbody"
absorbed energy → heats up
re-emits according to temperature T
"blackbody radiation" = thermal radiation

Aside: Temperature Scales

everyday temperature scales:

- Farenheit: water freezes at 32°F, boils at 212°F
- Celcius/Centigrade: water freezes at 0°C, boils at 100°C connection:

$$T(F) = \frac{9}{5}T(C) + 32^{\circ}$$
 (1)

In both scales, negative temperatures exist, not mysterious

Turns out: there is a *lowest possible temperature* \rightarrow "absolute zero" at -273°C = -459°F define Kelvin scale

$$T(K) = T(C) + 273^{\circ}$$
 (2)

^o so T(K) = 0 at absolute zero room temperature $\approx 30^{\circ}]C \approx 300$ K

Thermal Spectrum: Light as Thermometer!

peak λ is color seen: $\lambda_{\text{peak}} \propto 1/T$ where T is absolute temperature in Kelvin recall: $T_{\text{Kelvin}} = 273 + T_{\text{Celsius}}$ hotter \rightarrow more blue \rightarrow shorter λ "Wien's Law"

Turn the equation around: $T \propto 1/\lambda_{peak}$, namely

$$T = 3000 \text{ K} \left(\frac{10^{-6} \text{ m}}{\lambda_{\text{peak}}}\right)$$
(3)

so: can find T just from light! \Rightarrow spectrum as **thermometer** color measures temperature

σ

example: the Sun www: solar spectrum Sun's spectrum peaks in middle visible wavelengths: $\lambda_{\rm peak,Sun} \approx 500 \ {\rm nm} = 5 imes 10^{-7} \ {\rm m}$

$$T_{\text{Sun}} = 3000 \text{ K} \left(\frac{10^{-6} \text{ m}}{\lambda_{\text{peak},\text{Sun}}} \right) = 3000 \text{ K} \left(\frac{10^{-6} \text{ m}}{5 \times 10^{-7} \text{ m}} \right) \quad (4)$$
$$= 6000 \text{ K} \approx 10,000^{\circ} \text{ F} \qquad (5)$$

toasty!

Q: but the Sun is not all at one temperature—what has this T?

Q: does Wien's Law apply to people?

Q: what about Illini fans-blue shirt vs orange shirt?

 \neg

note: sunlight comes from Sun surface ("photosphere") \rightarrow we have found $T_{Sun,surfac} \rightarrow$ even hotter inside!

Humans and thermal radiation:

we are not at zero temperature—can and do radiate!

but infrared-invisible to naked eye, very visible to IR sensors

www: IR humans

But note: T-Shirt color \neq thermal radiation (good thing!) reflected light, not glow from heat!

Thermal Radiation and galaxies: www: M104 galaxy image--visible light vs IR *Q: compare-what's going on?*

 \odot

Moving Light Sources: Doppler Effect

moving wave source \rightarrow *change* in λ observed color $\lambda_{obs} \neq$ emitted color λ_{em}

www: Doppler animation

▷ source approaching ⇒ λ shorter: blueshift
▷ source receding ⇒ λ longer: redshift

Q: why is this fantastically useful for astronomers (and cops)?

Dopper \rightarrow detect motions and even measure speed just by looking!

shift depends only on
relative motion in radial direction ("line of sight")
towards observer

Approximate expression

10

$$\frac{\lambda_{\rm obs} - \lambda_{\rm em}}{\lambda_{\rm em}} = \frac{\Delta\lambda}{\lambda_{\rm em}} = \frac{v}{c}$$
(6)

where v is radial speed formula usually good enough (i.e., as long as $v/c \ll 1$) Q: what's going on if $\Delta \lambda < 0$?

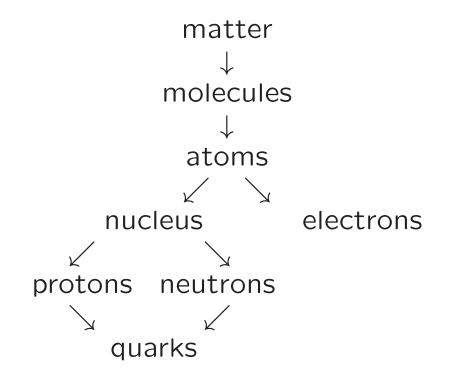
Observer's Scorecard

You can see an awful lot, just by looking. – Cosmologist Yogi Berra

Clever measurements of light can reveal

temperature via Wien's Law

speed via Doppler effect


Now go for the trifecta:

Q: how can we get composition (ingredient list) from light alone? A: read the barcode!

11

Matter*

All known substances ever found in any lab have the following structure

12

^{*}Fine print: wierdo dark matter not covered by this discussion!

iClicker Poll: Atoms in a Grain of Sand

Think of the smallest grain of sand between your toes at the beach

Go with your gut, vote your conscience! Pick the *largest* answer that works the number of atoms in 1 grain of sand is:

- A more than the number of people in this room
- B more than capacity of sold-out Memorial Stadium
- C more than the Chicagoland population
- D more than the population of Illinois
- 13

Ε

more than population of planet Earth

Answer: 1 grain of sand has about 10^{19} atoms that is: 10,000,000,000,000,000,000 atoms \gg global population $\approx 6.5 \times 10^9$ people lesson \Rightarrow atoms are **numerous** and **tiny**!

Atom Structure one or more electrons orbit a single nucleus electron (e): electric charge -1 nucleus: made of protons (charge +1) & neutrons (charge 0) mass: $m_p \approx m_n \approx 2000m_e$ \Rightarrow most of atom mass is in dense nucleus \Rightarrow most of atom volume occupied by electron orbits

total charge of atom: set by # electrons $\# e = \# p \rightarrow \text{neutral}$ $\# e = \# p - 1 \rightarrow \text{charge} = +1$: singly ionized etc.

 $\stackrel{\scriptstyle{}_{\scriptstyle{\leftarrow}}}{\stackrel{\scriptstyle{}_{\scriptstyle{\leftarrow}}}{=}} e$ moves around nucleus *Q: what does this tell us about forces in atoms?* orbits: curved paths – motion must be accelerated \rightarrow needs to be a net force–and there is! nucleus & *e* attracted by **electric** force rule: opposite charges attract, like charges repel

atom structure similar to Solar System: attractive force \rightarrow orbits big object in center, orbiting smaller objects

charge of nucleus $\Rightarrow \# p$ sets force on $e \rightarrow$ orbit properties determines chemical properties 92 atom varieties = **elements** from hydrogen = 1p to uranium = 92p www: periodic table

<u>1</u> 5

Chemical Composition

different elements combine/react differently \Rightarrow chemistry ex: water = H₂O = H-O-H

So: "what made of" = "chemical composition":
▷ what kinds of atoms?
▷ which are most, least numerous?

Examples Sun, Jupiter: about 70% hydrogen, 28% helium, 2% other="metals" Earth: about 50% oxygen, 30% silicon, only 0.1% hydrogen