Astro 350 Lecture 9 Sept. 12, 2011

Announcements:

- Discussion Question 3 due Wednesday
- HW3 available, due in 1 week

Please take and test-drive a diffraction grating slide

Last time: light

Clever measurements of light can reveal

- temperature via Wien's Law
- speed via Doppler effect

 \vdash

Today: energy, matter, & light

Composition

recall: matter made of *atoms* which come in a fixed set of *elements* and different elements combine/react differently \Rightarrow chemistry ex: water = H₂O = H-O-H

so: the question of "what is object X made of?"
= what is the "[chemical] composition" of X?
at deepest (=microscopic) level really asks:
▷ what kinds of elements?
▷ which are most, least numerous?

Examples

N

Earth: about 50% oxygen, 30% silicon, only 0.1% hydrogen
Sun, Jupiter: about 70% hydrogen, 28% helium, 2% other="metals"
www: solar system composition pie chart

Energy

every closed system has a *number*, the **energy**, which:

- is related to the forces in the system
- roughly corresponds to the ability of the system to do work-i.e., to change speeds, move with or against forces, or to undergo internal transformations Cosmologist L. Cable Guy: Energy is ability to "git-r-done"

★ key feature: in *closed system*, total energy doesn't change:
 conservation of energy

more abstract (and more general) idea than forces useful due to conservation

ω

Energy: Two Crucial Cases

Motion: moving object with mass m, speed v carries **kinetic energy**

$$KE = \frac{1}{2}mv^2 \tag{1}$$

Q: when is KE = 0? large?

Gravity: object of mass m, a distance R from mass M has gravitational potential energy

$$PE = -\frac{GMm}{R} \tag{2}$$

Q: where is PE=0, i.e., at what R? what happens when R=0?

- Q: how does PE at ground compare to PE 1 meter high?
- Q: dropped object to floor: PE? KE?
- Q: bouncing ball: what happens to KE, PE, total E?
- Q: why called "potential" energy?

4

Forces & Energy

Forces \neq energy Q: what are some differences? but forces always have associated energy for example: can "store" energy due to position in force field (e.g., gravity) \Rightarrow potential energy

examples:

СЛ

force	energy
gravity	gravitational potential energy
electricity	electrical potential energy
gas pressure	"compression energy"
attractive forces in atoms	bonds in atoms
(chemical forces)	(chemical energy)
forces in atomic nuclei	nuclear energy

iClicker Poll: Light and Atoms

Experiment: tube with gas under high voltage \rightarrow high-energy electrons accelerated, collide with gas atoms atoms receive energy from collisions, emit light

Vote your conscience! What will spectrum of tube look like?

- A continuous: all visible colors = all λ s
- **B** bands of colors = λ s in only some ranges
- C only a few *single* colors = a few individual λ

σ

demo: compare spectrum for different elements *Q: why is this incredibly useful?*

The Quantum Atom

at small distances (size of atoms) Newton's laws *fail*! atoms, light obey different rules: **quantum mechanics**

electron orbits

nucleus + e: like solar system? No! QM → e not like planet in atom, acts like wave !?! > most orbits forbidden! > only special orbit distances allowed → "quantized" in steps

```
allowed orbits \rightarrow energy levels
lowest energy \rightarrow stable orbit, closest to nucleus
"ground state"
```

7

Photons

just as matter (like e) can sometimes act like waves light can sometimes act like particles...

on small lengthscales or low intensities light acts like *particle*: "photon," symbol γ

discrete "lump" or "packet" of energy different colors \leftrightarrow different energies smaller $\lambda \rightarrow$ higher E:

$$E_{\rm photon} \propto \frac{1}{\lambda}$$
 (3)

00

www: EM spectrum as spectrum of photon energies

Light-Atom Interactions

If light hits atom and photon energy = atom energy level

- 1. atom absorbs photon
- 2. *e* jumps to higher level
- 3. atom in "excited" state

but excited = unstable

after time,

- 1. *e* jumps back to ground state
- 2. emits photon whose energy = excited ground *difference*

Atoms absorb/emit light

atom structure sets energies, and $\lambda \propto 1/E$

...which is different for different atoms

so energy level spacings different for different atoms

light spectrum gives atom "fingerprint" or "barcode"

spectrum \rightarrow composition

Measuring the Composition of the Cosmos

Example: The Sun

11

Sun, stars hotter, denser in center cooler, less dense at surface so: sunlight/starlight shows *Q*: what kind of spectrum? www: Sun spectrum amount absorbed in each line \rightarrow amount of atoms \rightarrow composition of Sun; works for other stars too!

Example: Foreground of Quasars

Quasar: really–monstrous supermassive black hole devouring gas and ejecting luminous jet for our purposes today: a lightbulb/cosmic beacon → light from hot material across universe passes thru intervening gas (if any) to get to us

- Q: is there much intervening gas? (guess!)
- Q: if so, what elements might be prominent?
 - *Q:* should it give emission or absorption features?