Astro 350 Lecture 10 Sept. 19, 2012

Announcements:

- Homework 3 due at start of class
- good news: no HW next week
 bad news: Hour Exam 1 next week; info online
- *Discussion* 4 due next Wednesday
- Bonus Participation: class portrait on Compass identify yourself to help me learn your name

Pick up a diffraction grating slide ...and please return at end of class Cosmo-Bigshot in the House!

Monday Sept 24: Prof. Wick Haxton, U. California Berkeley "The Origin of the Elements" Phi Beta Kappa Lecture, 4pm Lincoln Hall 1090

Last time: hot gas as dark matter? *Q: why is hot gas a good DM candidate? how hot? Q: how to test for hot gas DM? results? lessons?*

Recap: Hot Gas as Dark Matter?

dark matter needed to hold together galaxies, groups and clusters of galaxies

- dark: not detected with (visible) light
- matter: gravitates = has mass

hot gas?

ω

- has mass, but
- glows with thermal (blackbody) radiation but: if very hot, $T \gg 10,000$ K, peak λ is X-ray! not bright in optical/visible wavelengths!

Look with "X-ray vision" at clusters of galaxies

- hot gas found between galaxies!
- intracluster gas has more mass than the galaxies!
- ⇒ hot gas is a form of dark matter! (optically invisible)
- but :still find $M_{\text{galaxies}} + M_{\text{gas}} \ll M_{\text{gravitating}}$
- \Rightarrow the *majority of dark matter is* **not** *hot gas*! mystery remains!

Lineup of Dark Matter Suspects

Q: what about cold gas? How to test?

4

Cold Gas as Dark Matter?

recall Wien's law-thermal radiation color: $\lambda_{peak} \propto 1/T$ hotter \leftrightarrow bluer, colder \leftrightarrow redder

if gas has $T\ll$ 3000 K, then $\lambda_{\rm peak}$ in IR or radio very dim at optical wavelengths

(Л

suggests obvious test: look for cold gas halos of galaxies \Rightarrow search for thermal infrared or radio

But: thermal emission depends strongly on Tfor object at temperature T, of fixed size emitted blackbody radiation (i.e., luminosity) $L_{\text{therm}} \propto T^4$ \rightarrow hot objects hugely luminous, but cold objects not \rightarrow if gas very *cold*, also very *dim*-too dim to see! \rightarrow so lack of IR or radio signal does not prove lack of cold gas Q: how else can we test for cold gas?

Energy

every closed system has a *number*, the **energy**, which:

- is related to the forces in the system
- energy measures ability of the system to affect change i.e., to change speeds, move with or against forces, or to undergo internal transformations
- Cosmologist L. Cable Guy: Energy = ability to "git-r-done"

★ key feature: in closed system, total energy doesn't change even if it changes forms

conservation of energy

 more abstract (and more general) idea than forces useful due to conservation

Energy: Important Examples

Motion: moving object with mass m, speed v carries kinetic energy

$$KE = \frac{1}{2}mv^2 \tag{1}$$

Q: when is KE = 0? large?

Thermal Energy due to random motion of atoms atoms "jiggle" solid, liquid, gas so each atom has kinetic energy due to jiggle \rightarrow "heat" really is energy in form of all random motions kinetic energy of average atom: $KE_{avg} = 1/2 \ m_{atom} v_{avg}^2 \propto T$ \rightarrow hotter = more random KE = faster!

Forces & Energy

Forces \neq energy Q: what are some differences? but forces always have associated energy for example: can "store" energy due to position in force field (e.g., gravity) \Rightarrow potential energy

examples:

 ∞

force	energy
gravity	gravitational potential energy
electricity	electrical potential energy
gas pressure	"compression energy"
attractive forces in atoms	bonds in atoms
(chemical forces)	(chemical energy)
forces in atomic nuclei	nuclear energy

Temperature, Atoms, and States of Matter

atoms always in random motion \rightarrow collide with each other! imagine starting cold, and turning up T

- at lowest T: cold matter
 low speeds → gentle collisions
 if dense enough: atoms locked together
 → solid! random "jiggle" too weak to dislodge atoms
- if *warmer*: atoms freed to "roll" past each other melt → liquid! atoms move ("flow") but still touch

Q

- if *warmer still*: atoms can fly free
 evaporate → gas! and atoms "bounce back" when collide
- if really *hot*: gas atoms collide at high speed atoms torn apart = ionized \rightarrow free *e* and nuclei: **plasma**
- hot gas in galaxy clusters: ionized plasma, no bound atoms cold gas clouds: all atoms are bound, none ionized

iClicker Poll: Light and Atoms

Experiment: tube with gas under high voltage \rightarrow high-energy electrons accelerated, collide with gas atoms atoms receive energy from collisions, emit light

Vote your conscience! What will spectrum of tube look like?

- A continuous: all visible colors = all λ s
- **B** bands of colors = λ s in only some ranges
- C only a few *single* colors = a few individual λ

10

demo: compare spectrum for different elements *Q: why is this incredibly useful?*

The Quantum Atom

at small distances (size of atoms) Newton's laws *fail*! atoms, light obey new & different rules: **quantum mechanics**

electron orbits

11

nucleus + e: like solar system? No! QM → e not like planet in atom, acts like wave !?! ▷ most orbits forbidden! ▷ only special orbit distances allowed → "quantized" in steps

```
allowed orbits \rightarrow energy levels
lowest energy \rightarrow stable orbit, closest to nucleus
"ground state"
```

Photons

just as matter (like e) can sometimes act like waves light can sometimes act like particles...

on small lengthscales or low intensities light acts like *particle*: "photon," symbol γ

discrete "lump" or "packet" of energy different colors \leftrightarrow different energies smaller $\lambda \rightarrow$ higher E:

$$E_{\rm photon} \propto \frac{1}{\lambda}$$
 (2)

 $\stackrel{}_{N}{\overset{}_{N}}$ www: EM spectrum as spectrum of photon energies

Light-Atom Interactions

If light hits atom and photon energy = atom energy level

- 1. atom absorbs photon
- 2. *e* jumps to higher level
- 3. atom in "excited" state

but excited = unstable

after time,

- 1. *e* jumps back to ground state
- 2. emits photon whose energy = excited ground *difference*

Atoms absorb/emit light

atom structure sets energies, and $\lambda \propto 1/E$

...which is different for different atoms

so energy level spacings different for different atoms

light spectrum gives atom "fingerprint" or "barcode"

spectrum \rightarrow composition

Measuring the Composition of the Cosmos

Example: The Sun

15

Sun, stars hotter, denser in center cooler, less dense at surface so: sunlight/starlight shows *Q: what kind of spectrum?* www: Sun spectrum amount absorbed in each line \rightarrow amount of atoms \rightarrow composition of Sun; works for other stars too!

Example: interstellar gas in our Galaxy

look at stars in our own Galaxy light passes thru space between us and the star Q: *if interstellar gas, what should we see*? www: starlight spectrum interstellar gas revealed! and composition found! \rightarrow mostly hydrogen and helium, about 2% heavy elements

Dark Matter as Cold Gas Halos?

What if dark matter is in the form of cold gas?

If galaxy dark halos are made of cold gas

- all galaxies embedded in huge clouds of (neutral) atoms including our own!
- cold $\rightarrow L \propto T^4$ small thermal glow dim, maybe missed! could "hide" from IR and radio telescopes!

But note: when we observe other galaxies their light must pass through the halo of our own!

$$Q$$
: how to test for cold gas in our own halo?

iClicker Poll

Look at **spectrum** of light from distant galaxies if cold gas fills our dark halo atoms will absorb photons if match energy levels \rightarrow spectral lines

Vote you conscience!

What will we find in the spectra?

- A strong absorption lines from our halo cold gas is the dark matter!
- B no/weak absorption lines cold gas is not the dark matter!

17

Cold Halo Gas?

galaxy spectra show no lines
 as light passes into our own dark halo
 → our Galaxy not surrounded by cold gas!

also: *no lines* from cold gas reservoirs
 as light passes *out* of distant galaxies
 → other galaxies also not surrounded by cold gas!

Conclude: *cold gas is not the dark matter* mystery persists! must look elsewhere!

18

Lineup of Dark Matter Suspects

Next candidates: compact objects $\stackrel{_{\scriptstyle \ensuremath{\tiny \ensuremath{\scriptstyle \ensuremath{\tiny \ensuremath{\tiny \ensuremath{\scriptstyle \ensuremath{\scriptstyle \ensuremath{\scriptstyle \ensuremath{\scriptstyle \ensuremath{\tiny \ensuremath{\tiny \ensuremath{\scriptstyle \ensuremath{\n}\ensuremath{\n\ensuremath{\n}\ensuremath{\n\ensuremath{\n\ensuremath{\n\ensuremath{\n\ensuremath{\s \ensuremath{\s \ensuremath{\m}\ensuremath{\s \ensuremat\\$

Kirchhoff's Laws

some gas absorbs light, some emits which is which?

 \Rightarrow depends on gas **density**, T

Kirchhoff:

- if solid or dense gas is hot emits continuous spectrum: blackbody
- 2. if thin, rarefied gas is hot emits emission line spectrum
- $\stackrel{\text{$2$}}{\stackrel{\text{$2$}}{\quad}} \text{$3$. if continuous spectrum passes thru cool gas} \\ \text{$atoms absorb light} \rightarrow absorption line spectrum $absorption line $absorption line$