Astro 350 Lecture 14 Sept. 26, 2012

Announcements:

- HW 4 available, due at start of class Friday
- no Discussion this week!

Before exam: nuclear reactions in stars *Q: how do we know the Sun is nuclear powered? Q: what is the main result of nuclear reactions in the Sun today?*

The Stars as Suns

We've proved that Sun is nuclear reactor but we've seen the Sun is a typical star typical mass, typical luminosity ⇒ all stars run by thermonuclear fusion

The Night sky, the Universe lit up ultimately by nuclear power

iClicker Poll: Stellar Life Expectancy

Vote your conscience!

What's the connection between how/high mass star lifespans?

- A high mass \rightarrow more fuel \rightarrow burn longer
- **B** low mass \rightarrow low luminosity \rightarrow burn longer

more fuel \rightarrow more luminosity \rightarrow same lifespans for all stars

ω

Life Expectancies of Stars

recall "flashlight equation" – energy conservation & star lifetime (battery) = (wattage) × (lifetime) $\rightarrow E_{fuel} = L\tau$ for stars:

• more mass \rightarrow stronger gravity \rightarrow much hotter burn: $L \propto M^4$ www: star luminosity data so if $M = 2M_{\odot}$, then $L = 16L_{\odot}!$

- \bullet fuel is mass, so $E_{\rm fuel} \propto M$
- \Rightarrow together this means

$$\tau = \frac{E_{\text{fuel}}}{L} \propto M^{-3} \tag{1}$$

$$= 10 \text{ billion years } \left(\frac{M_{\odot}}{M}\right)^3 \tag{2}$$

example: lifespan $\tau(2M_{\odot}) = \tau_{\odot}/8 = 1.25$ billion years

4

so if a bunch of stars are formed with a range of masses *Q: what happens?*

trend:

high mass $M \leftrightarrow$ high wattage $L \leftrightarrow$ short lifespan τ e.g., massive star lifespans = few million years low $M \leftrightarrow$ low wattage \leftrightarrow long life e.g., low-mass star lifespans = many billions of years

if many stars born at once—as in a cluster—then massive stars die first (explode) then only lower-mass stars left

observed! young cluster have massive stars old clusters do not

Star Weight and Fate

the *lifespan* and *fate* of a star is determined by its **mass** at birth \rightarrow mass sets how much gravity star must fight against

Very Low-Mass Stars: "Immortal"

if $M < 0.8 M_{\odot}$, gravity weak $\rightarrow T$ low at core these stars have low L and low temperature

 \rightarrow nuke burning very slow

σ

- \rightarrow takes a long time to exhaust H fuel
 - H burning time (main seq lifetime) > age of Universe
- \rightarrow none have died yet-"live forever" (well, a very long time...)

Q: low-mass stars are interesting to cosmologists–why?

Brown Dwarfs as Dark Matter Candidates

low-mass stars have low L and low T

- *low luminosity* $L \rightarrow$ not much light produced
- *low temperature* \rightarrow emission mostly in infrared, not visible

recall $L \propto M^4$: lower mass \rightarrow much lower L

- 0.08 $M_{\odot} < M <$ 0.5 M_{\odot} : L < 0.01 L_{\odot} "red dwarfs"
- $M < 0.08 M_{\odot}$: $L < 0.0001 \ L_{\odot}$ "brown dwarfs"

Brown dwarfs:

- have mass
- very low-luminosity = very dim, and only emit in IR
- compact stars don't block light when looking thru halo
- live "forever"

 $\overline{}$

⇒ brown dwarfs are excellent dark matter candidates!
 Q: how to test for them? ...we will return to this next week

All Good Things Must Come to an End

Recall star life cycle so far:

star life always a struggle against gravity

- stars born from gravitational collapse of cold gas clouds made mostly of hydrogen
- youth/middle age: H → He fusion in core energy/heat source keep stars pressurizes and stable longest phase in life of all stars

Q: but what happens when *H* in core is gone?

Helium Burning

Low mass stars burn so slowly, H fuel "never" exhausted what if mass is higher (e.g., for stars like the Sun?)

Helium Burning–All Stars $> 0.8 M_{\odot}$

Q

core loses heat \rightarrow loses pressure \rightarrow contracts due to gravity but compression $\rightarrow T \uparrow$: ignite nuke rxns with helium:

 ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow \text{carbon} + \text{energy}$ (3)

He ash \rightarrow fuel to make C: cosmic recycling!

What's next? Depends on star gravity and thus mass M

Death-Throes: Intermediate-Mass Stars $0.8M_{\odot} < M < 8M_{\odot}$ once He \rightarrow C in core: contract again but don't heat enough to ignite C

- \rightarrow star core compresses to a giant, hot, compact solid outer layers unstable, driven off
- remaining hot solid visible as "white dwarf" inert stellar cinder
- \approx 50% of star mass ejected, includes newly-made He and C observe gasses as "planetary nebula"
- \Rightarrow intermediate mass stars are major source of cosmic carbon C and He-rich, H-depleted gas \rightarrow next generation of stars

10

Q: but what if the star can ignite carbon?

High-Mass Stars: $> 8M_{\odot}$

high mass \rightarrow enormous gravity \rightarrow high T in core repeated cycles of:

- core nuclear fusion "burning" until fuel exhausted
- contraction, heating
- ash \rightarrow new fuel

in this way:

helium \rightarrow carbon \rightarrow oxygen \rightarrow magnesium \rightarrow ... \rightarrow iron

- energy released, maintains star stability, luminosity
- heavy elements produced up to iron
- \bullet burning hotter, faster \rightarrow rapid lifespan
- but when core is iron, game over:
 no energy release in iron fusion
- iron core contracts to ultradense solid then becomes unstable to its own gravity \rightarrow collapses

Supernova Explosions: Deaths of Massive Stars

iron core collapses, compressed until center of star as dense as atomic nucleus

- core becomes hyperdense solid, collapse halts electrons crushed into protons making neutrons
- burst of neutrinos emitted
- overlying layers fall (at 10% c!) onto core then "bounce" back
- \bullet launched at $10\% c > v_{\rm esc},$ ejected into space
- explosion seen: supernova!
- 1987: neutrinos seen from nearest SN in 300 years!

www: supernovae $\stackrel{i}{\sim}$ www: SN 1987A

The Legacy of Supernovae

Supernovae have a major impact on their environment

- gas ejected: contains newly-formed heavy elements high-mass stars major source of oxygen up to uranium
- explosion heats, stirs up interstellar gas
- leftover cinder: neutron star or black hole

Origin of the Elements: Nucleosynthesis

Stars are nuclear reactors during their lives eject reaction products when die

 \Rightarrow stars are element factories

We will see: the big bang also produces elements but only the lightest two: H and He and a tiny amount of lithium \rightarrow all heavier elements made in stars!

intermediate mass stars

 make most carbon, also helium the carbon your DNA came from planetary nebulae!

high-mass stars

 make oxygen, iron, & other heavy elements up to uranium the iron in your blood comes from supernova explosions! Cosmologist Carl Sagan

We are made of star-stuff.

Cosmologist Joni Mitchell

We are stardust We are golden We are billion year old carbon

Supernovae* and Cosmology

Supernova explosions are excellent cosmological tools for a number of reasons

Q: why? what is advantageous/interesting about observing supernovae all across the universe?

Q: what would be challenging about observing supernovae?

*Cosmo-grammar tip: one supernova, many supernovae (it's Latin, dude!)

Cosmology with Supernovae: Pros

supernovae are powerful, very luminous explosions marking the deaths of massive stars \rightarrow handy tools for cosmologists

supernovae are very luminous
 can see from great distances—across the universe!
 and since telescopes are time machines...
 SN are beacons revealing much of cosmic history

 ★ supernovae come from massive stars short-lived → require ongoing star formation
 → SN reveal presence and nature of star formation at distant places and times

Cosmology with Supernovae: Cons

Supernova events are explosions of massive stars

- don't know ahead of time when a star will blow up
- explosion brightness temporary-dies off after a few months
- < 1% of stars are massive → few die this way only few each century in big galaxy like ours last observed SN in Milky Way was > 300 yrs ago

Practical challenges:

- have to monitor many galaxies to have good chance of finding a SN
- \triangleright want to find peak brightness (flux) F_{peak}
 - \rightarrow have to observe each SN more than once
- as it flares up then dims