Astro 350 Lecture 15 Oct. 3, 2012

Announcements:

 \vdash

- HW 4 available, due at start of class Friday instructor office hours today 1-2pm TA office hours tomorrow 9:30–10:30am
- no Discussion was due today
- **Discussion 5** available today, due next Wednesday

Last time: stars and cosmology

- *Q*: What is a supernova? Why are supernovae important?
- *Q*: Why are supernove good cosmological tools?
- Q: How can we find supernovae when can't predict them?

Finding Cosmic Supernovae

Massive star appearance (luminosity, temperature) doesn't change over last several 100,000 years of lifespan \rightarrow cannot when massive stars will die in supernovae explosions

Observational Strategy:

- monitor many many galaxies
 - \rightarrow **survey** wide area of sky
- observe each every few days: repeatedly scan
- look for appearance, brightening, and disappearance of supernovae
- huge amounts of data \rightarrow huge challenge to process

powerful computers and huge digital cameras make this possible e.g., can digitally "subtract" before/after images \rightarrow difference shows what's changed: SN

www: SN search teams

N)

Standard Candles and Astronomical Distances

Supernovae^{*} have very useful property \Rightarrow peak luminosity L_{peak} always the same ...as best can tell so far... an extremely useful property!

recall: apparent brightness (flux F) depends on luminosity but also on distance: $F = \frac{L}{4\pi R^2}$

★ imagine object with known luminosity: "standard candle" e.g., 100 Watt lightbulb, or SN at peak www: cartoon → can measure flux $F_{\rm obs}$, and using known $L_{\rm candle}$ solve for distance $R = \sqrt{\frac{L_{\rm candle}}{4\pi F_{\rm obs}}}$

Supernovae are great standard candles because give distance measures across the universe

*In fact: a special kind of supernova: "Type Ia" = exploding white dwarfs

Supernovae Observed Across the Universe

Results thus far:

- ★ supernovae seen out to great distances \rightarrow early times star birth indeed occurred in the past, not just now!
- \star in fact, birthrate *much* higher in the past!
- ★ also: SN as standard candles give very interesting result ... will provide most direct evidence for bizarre dark energy!

The Surveying Illini

UofI involved in two major sky surveys

Dark Energy Survey www: DES

location: Cerro Tololo, Chile \rightarrow southern celestial hemisphere telescope: 4 meter diameter camera: 570 Megapixel scan mode: monitor 40 deg² = 80× full moon first light: *two weeks ago! comissioning under way!*

Large Synoptic Survey Telescope www: LSST

location: Cerro Pachón, Chile telescope: 8 meter diameter $\rightarrow 4 \times$ more collecting area camera: 3200 Megapixel scan mode: monitor 20,000 deg² = *entire southern sky* under construction: first light expected 2019

СЛ

Q: what will these surveys find?

Anticipated Survey Results

Deep *maps* of the *unchanging* sky will show

- stars in Milky Way
- nearby and distant galaxies
- the large scale structure of the Universe
- surprises we have not anticipated

But scanning will reveal, for the first time *movies* of the entire (southern) sky

 \rightarrow we will see anything that changes over 10 year survey time

- comets & asteroids in solar system
- variable stars

0

- SUPERNOVAE (and other explosions: novae, gamma-ray bursts, other?)
- surprises we have not anticipated

Predictions (Dr. Amy Lien, UIUC PhD & BDF):

DES: about 5000 supernovae per year! out to 4000 Mpc!
LSST: about 500,000 supernovae per year! to > 4000 Mpc!

Research Opportunities for Undergraudates

DES and LSST opportunities here and now!

DES comissioning going faster than expects "production run" collecting science data starts this December and will run for 5 years

LSST under construction but now is the time to "get in on the ground floor"

Lots of work to do for smart young cosmologists!

 \neg

Lineup of Dark Matter Suspects

compact objects arising from star formation $_{\infty}$ are small \rightarrow easy to miss but Einstein taught us a way to find them!

Space/Time: Gut Reactions and Common Sense

Relativity is a theory of space, time, and matter

Go with your gut:

- *Q*: what is the nature of space?
- e.g.: dimensionality? size? distances between points? properties here vs elsewhere?

Still go with your gut:

- *Q*: what is the nature of time?
- e.g.: when are goings-on "simultaneous"? properties of time here vs elsewhere?

Space

Gut expectations from everyday life

Space is:

- three dimensional-i.e., extends in 3 independent directions points described with 3 coordinates, e.g., (x, y, z)
- geometry according to Euclid (i.e., as learnt in high school) circle circumference/diameter= π triangle internal angles sum to 180°
- infinite in size, volume e.g., (x, y, z) Cartesian grid extends without limit

Before the end of the semester

 $\stackrel{!}{\vdash}$ all of the above will be called into question!

Space: Wit and Wisdom

Absolute space, in its own nature, without relation to anything external, remains always similar and immovable. Relative space is some movable dimension or measure of the absolute spaces ...

– Cosmologist Sir Isaac Newton

Q: What's Ike talking about? what's absolute vs relative? examples?

Time: Bigwigs Weigh In

What then is time? If no one asks me, I know what it is. If I wish to explain it to him who asks, I do not know.

- Cosmologist St. Augustine

Absolute, true and mathematical time, of itself, and from its own nature, flows equally, without relation to anything external.

– Cosmologist Sir Isaac Newton

Time keeps on slippin slippin slippin Into the future

- Cosmologist Prof. Steve Miller

Time: Commonsense Expectations

Time: Gut Expectations

14

- universal—"flows at same rate" everywhere
 e.g., as 1 hour passes here, 1 hour also passes
 in Chicago, North Pole, the Moon, M31 galaxy, ...
 don't need new watch when travel out of state
- simultaneous=clocks all read the same since time universal, can coordinate all clocks to read same and once set, will always stay synchronized

By the end of the week: will find these ideas untenable!

Space, Time, and Motion

motion links space and time and so depends on nature of space and time

Pre-Relativity: Aristotle

Aristotle: Ancient Greece ideas based on everyday experience, common sense (paraphrased here to anticipate where we are going)

natural state of motion: rest

e.g., oxcarts, arrows, anchors come to rest on Earth's surface

 \rightarrow absolute space exists, defined by "frame"

in which objects naturally at rest

 $\overline{\mathbf{G}}$ and absolute time exists too:

time "flow" is same always, everywhere, for everyone

Aristotleian Space: Description

```
to completely specify the address or location
   of any point in space
need to give three numbers
thus we say ⇒ space is three dimensional
```

examples of 3-numbered addresses:

- in city: 1. street, 2. number on street, 3. floor of building
- on GPS device: 1. latitude, 2. longitude, 3. altitude

Why? Space has 3 independent directions left-right, up-down, back-front need to give location in all three direction (dimensions) to completely specify a point

If label points with 3-D (x, y, z) Cartesian grid

- Aristotelian space: set of all possible (x, y, z) addresses
- fixed "stage" for goings-on in time t

Extreme Makeover for Aristotle: Events and Spacetime

Useful idea (not Aristotle's, but he wouldn't object) **event**-localized occurrence in space and time e.g., firecracker, finger snap idealized \rightarrow no spatial extent, no duration in time \Rightarrow unique set of (x, y, z, t) space+time coordinates

Set of all possible events = "spacetime" *Plot: Aristotle spacetime:* x - y *plane in perspective,* t *up*

Note: need 4 coordinates → spacetime is 4-dimensional ...even for Aristotle! but as yet nothing odd or Science-Fiction-y just a mathematical labeling of the familiar

iClicker Poll: Aristotle and Simultaneity

In an Aristotelian world:

is it meaningful for events to be "simultaneous" = at the same time?

Q: if not, why not? what's the problem?

 $\stackrel{to}{\infty}$ Q: if so, how do you tell?

Life According to Aristotle

consider two events (plot in spacetime) firecracker 1: (x_1, y_1, z_1, t_1) firecracker 2: (x_2, y_2, z_2, t_2)

Q: What is spatial distance between events?Q: What is duration/elapsed time between events?Q: How to tell if events simultaneous?

two events: firecracker 1: (x_1, y_1, z_1, t_1) firecracker 2: (x_2, y_2, z_2, t_2)

spatial distance ℓ between events:

$$\ell^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \tag{1}$$

- à la Pythagoras
- result indep of time coordinates \rightarrow encodes idea of "absolute space"

elapsed time between events: $t_2 - t_1$ simultaneous: no elapsed time $\rightarrow t_2 = t_1$ (same time coord)

- indep of place in space (i.e., coordinates)
- ightarrow encodes idea of "absolute time"