Astro 350 Lecture 23 Oct. 22, 2012

Announcements:

- HW 7 due at start of class Friday
- **Discussion 7** due Wednesday

Guest Cosmologist today: Dr. Brett Hayes expert on observational cosmology and large-scale structure

Last time: Hubble's law

 \vdash

Q: What's Hubble's law? What does it say in simple terms? What's the pattern of galaxy motions relative to us? What are possible interpretations of this motion? Edwin Hubble (1929):

- (essentially) all galaxy spectra show redshifts
 - \Rightarrow all galaxies move *away* from us
- moreover: farther galaxies move faster
- \bullet mathematically: velocity v and distance r related by

 $v = H_0 r$ with Hubble "constant" $H_0 = 72$ km sec⁻¹ Mpc⁻¹

Galaxies in the universe, and thus the Universe itself displays a highly ordered motion!

This cries out for interpretation!

1. **"Egoist" interpretation of Hubble's law** *We are at the center of the Universe*

Hubble "flow" can be explaied if all galaxies exploded outward from here

- if so: age of Universe = "Hubble time" $1/H_0 = 14$ billion yrs ...which turns out to be nearly correct!
- but: this is an anti-Copernican outlook
- ω
- and no evidence we were the center of an explosion

2. Einstein interpretation of Hubble's law:

using General Relativity:

Universe is expanding

that is, **space itself is expanding**!

recall: this is possible, since GR says spacetime is dynamic!

But this implies that

- all galaxies receding from all others
- and they do so because they are "riding" on points within an expanding grid! imagine rubber graph paper being stretched!
 bold, strange idea!

demo: expanding universe Q: implications?

4

The Magic of Hubble

Somewhat technical derivation: consider three arbitrary cosmic points: $\vec{r}_{BC} = \vec{r}_{AC} - \vec{r}_{AB}$

Assume A sees Hubble's law:

- $\vec{v}_{AB} = H\vec{r}_{AB}$
- $\vec{v}_{AC} = H\vec{r}_{AC}$

Then ask: what does B see? C?

find velocities relative to B: $\vec{v}_{BC} = \vec{v}_{AC} - \vec{v}_{AB} = H(\vec{r}_{AC} - \vec{r}_{AB}) = H\vec{r}_{BC}$

σ This is huge! Q: why? What have we proven?

we have shown:

if A sees Hubble's law, then so do (arbitrary) B and C thus: if *any* observer measures Hubble's law then *all* observers will measure Hubble's law!

so: Hubble law implies

- \rightarrow all galaxies recede according to same law
- \rightarrow no need for center, space has no special points

Moreover: Hubble law is *only* motion which preserves homogeneity and isotropy i.e., *any* other motion breaks cosmo principle ...but Hubble law is exactly what's observed!

σ

Revolution Re-Re-Re-Visited

Copernican Revolution I (17th Century):

Earth is one typical planet among many not center of solar system

Copernican Revolution II (earth 20th Century):

Sun is one typical star among many not center of Milky Way Galaxy

Copernican Revolution III (1920's):

Milky Way is one typical galaxy among many Universe much larger than previously thought

Copernican Revolution III (late 20th century):

most matter in the U is weakly interacting dark matter we are not even made of the dominant stuff

Copernican Revolution IV (20th century):

Universe is homogeneous on large scales,

and has no center

~

... stay tuned for more...

Expansion and Cosmology

All of cosmology is nothing more or less than the evolution of a system that is

- homogeneous
- isotropic
- expanding
- \star much of cosmology amounts to imagining a box
 - filled homogeneously with galaxies (today) or atoms/particles (in the early Universe)
- with other identical expanding boxes on all sides and asking: *how do the contents respond as the box expands?*
- $^{\infty}$ \star to do this don't need to know if U. has finite or infinite volume! question is interesting but can distract and confuse

Describing Expansion

consider triangle defined by 3 observers at t_1 if homogeneous and isotropic expansion at any later time t_2 , new triangle *must always be* "similar to" original triangle i.e., have same "shape" – same angles, ratios of sides *Q: why?*

similar \rightarrow ratio C/B always the same so

$$\frac{r(t_1)}{s(t_1)} = \frac{r(t_2)}{s(t_2)} \tag{1}$$

rearrange:

$$\frac{r(t_2)}{r(t_1)} = \frac{s(t_2)}{s(t_1)}$$
(2)

10

Q: what does this imply? Hint: must work for any triangle!

cosmo principle \rightarrow triangle *must be* similar: if stretched more in one direction \rightarrow expansion not isotropic there would be a preferred direction

since for any triangle at any two times t_1, t_2

$$\frac{r(t_2)}{r(t_1)} = \frac{s(t_2)}{s(t_1)}$$
(3)

then these ratios must have a universal (triangle-indep) value! and *any* length ℓ changes with time so that

$$\frac{\ell(t_2)}{\ell(t_1)} = \frac{a(t_2)}{a(t_1)}$$
(4)

where a(t) must be universal scale factor measures stretching of space due to expansion

11

A Gut Feeling for the Cosmic Stretch

consider two concentric circles the smaller with radius $r_{today} = 1$ Mpc today and the larger with radius $R_{today} = 2$ Mpc today

at some past time, the larger circle had radius $R_{\text{past}} = 1 \text{Mpc} = 12R_{\text{today}}$

Q: at that time, what was the radius of the smaller circle? at some future time, the larger circle will have $R_{future} = 4Mpc = 2R_{today}$

Q: at that time, will will be radius of the smaller circle?

Q: what does this tell us about how radii change with time?

⁵ this rule has to apply for radii in all directions *Q*: why? *Q*: what does this tell us about how distances change with time? In the concentric circle example: large circle must keep radius R = 2r at *all times* or else expansion would not keep the Universe homogeneous

this means that that when the larger circle had radius

 $R_{\text{past}} = 1 \text{Mpc} = 12 R_{\text{today}}$ it must be that the smaller circle had $r_{\text{past}} = 12 r_{\text{today}} = 0.5 \text{ Mpc}$

similarly, when the large circle will have radius

 $R_{\text{future}} = 4 \text{Mpc} = 2R_{\text{today}}$ it must be that the smaller circle will have $r_{\text{future}} = 2r_{\text{today}} = 2 \text{ Mpc}$

13

And thus in general, *all* circle radii are shrunken or enlarged by one, same, universal factor

 $r(t) = universal stretch factor \times r_{today}$

(5)

moreover: this should apply to all cosmic distances!

The Cosmic Scale Factor

Define:

- t₀=present age of Universe= "time on cosmic clock"
- *l*₀=distance between any two objects A & B as measured today, at the present time obviously, value is different depending on which objects you wish to describe!

then at any time t, distance ℓ between A and B is

 $\ell(t) = a(t) \times \vec{\ell_0}$ AB distance at t scale factor present AB distance time varying time varying fixed once and for all

note: haven't said yet how a changes with tbut: if U. expanding Q: what does this mean for a(t)? What can you say about $a(t_0/2)$? $a(2t_0)$? cosmic scale factor a(t) measures how distances or lengths change with time

 \rightarrow cosmic ''stretch-o-meter'' or ''copier enlargement setting''

since all lengths change as $\ell(t) = a(t)\ell_0$ expanding U $\rightarrow \ell(t)$ increases with t \rightarrow scale factor a(t) increases with tand since we have $a(t_0) = 1$, then $a(t_0/2) < 1$ i.e., a < 1 in the past, and $a(2t_0) > 1$ i.e., a > 1 in the future

So: entire history of the universe contained in the details of how scale factor a grows with time! e.g., at some time in past a = 1/2: "galaxies twice as close"

e.g., at some time in past a = 1/2: "galaxies twice as close but haven't yet worked out when a(t) = 1/2! we'll get to that directly...

 $\stackrel{\text{tr}}{\neg}$ Q: how do cosmic volumes depend on a? e.g., Q: when a = 1/2?

Expansion and Areas, Volumes

consider a cube, galaxies at corners present side length L_0 diagram: cube, label side L_0 \rightarrow cube is "comoving" w/ expansion expansion arrows volume $V \propto a^3$ $\rightarrow V = L^3 = L_0^3 a^3 = V_0 a^3$ side area $A = A_0 a^2$

So: back when a = 1/2, then $V = \frac{1}{8}V_0$, $A = \frac{1}{4}A_0$ galaxies compressed to volume 8× smaller!

```
www: raisin cake analogy

www: balloon analogy

Q: what is tricky, imperfect about each analogy?
```

Expansion: Einstein \rightarrow Hubble

Somewhat technical derivation:

for two arbitrary observers (e.g., "galaxies") scale factor gives distances $\vec{r}(t) = \vec{r}_0 a(t)$ so velocity is

$$\vec{v}(t) = \Delta \vec{r} / \Delta t = d\vec{r} / dt \equiv \dot{\vec{r}} = \vec{r}_0 \dot{a}$$
(6)

with shorthand notation: time rate of change $\dot{a} = da/dt$

but we can rewrite this as

$$\vec{v}(t) = \frac{\dot{a}}{a} a\vec{r_0} = H(t)\vec{r}$$
(7)

Q: which means?

17

We have proven that at time tobservers at distance r recede at speed

$$v(t) = \frac{\dot{a}}{a} \ a \ r_0 = H(t) \ r(t)$$
 (8)

which means...

- \Rightarrow In expanding U, everyone observes Hubble law!
- now interpret "Hubble parameter" H(t) as

$$H(t) = \dot{a}/a \tag{9}$$

expansion rate at time t

- $H(t_0) = H_0$ = expansion rate today
- but expansion rate need not be (and usually isn't) constant!

Redshifts

wavelengths are lengths! ...it's right there in the name! expansion stretches photon λ $\lambda \propto a$ if emit at $t_{\rm em}$, then $\lambda(t) = \lambda_{\rm emit} a(t)/a(t_{\rm em})$

if observe later, $\lambda_{obs} = \lambda_{em} a_{obs}/a_{em}$ measure redshift today:

$$z = \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} = \frac{1 - a_{\text{em}}}{a_{\text{em}}} \Rightarrow a_{\text{em}} = \frac{1}{1 + z}$$

19

Scale factor \leftrightarrow redshift a = 1/(1 + z)z = 1/a - 1

www: Sloan Digital Sky Survey spectra

www: quasar recordholder

Example: most distant quasar has z = 6.4 \rightarrow scale factor a = 1/(1 + 6.4) = 0.135interparticle (intergalactic) distances 13.5% of today! \rightarrow galaxies 1+6.4=7.4 times closer squeezed into volumes $(7.4)^3 = 400$ times smaller!

Recall from General Relativity, black hole discussions gravitational redshifting often accompanied by... *Q: what? and how might you observe this?*

Cosmic Time Dilation

GR: gravitational redshifting goes hand-in-hand with gravitational time dilation

 \rightarrow i.e., redshifted objects also appear to have slow clocks and blueshifted objects appear to have fast clocks

Cosmic time dilation observed! And only recently!

Challenge: need "standard clock" in order to know

that it's running slow

Tool: exploding stars (supernovae) – know timing of brightness observe high-z supernovae, see lengthening of duration in explosion and aftermath! Woo hoo!

 $\stackrel{\times}{\sim}$ Q: how does expansion affect photon energy? Q: for blackbody, how does expansion affect T? hint: $T \leftrightarrow \lambda$ connection?

Expansion and Radiation Energy & Temperature

since $E_{\gamma} = hc/\lambda \propto 1/\lambda$, then $E_{\gamma} \propto 1/a \rightarrow$ photon energy redshifts, i.e., decreases with time

for thermal radiation, Wien's law: $T \propto 1/\lambda_{max}$ so $T \propto 1/a \Rightarrow T$ decreases \rightarrow U cools! the universe cools as it expands

today: cosmic thermal radiation peaks at $\lambda \sim 1 \text{ mm}$ "cosmic microwave background" radiation (CMB) CMB temperature today: $T_0 = 2.725 \pm 0.001 \text{ K}$ $\approx 3 \text{ degrees above absolute zero}$

```
in past \rightarrow CMB, universe hotter:

\stackrel{\text{N}}{\sim} distant but still "garden variety" quasar: z = 3

"feels" T = 8 K (effect observed!)
```