Astro 350 Lecture 24 Oct. 24, 2012

Announcements:

Н

- HW 7 due at start of class Friday
- **Discussion 7** due today

Guest Cosmologist today: Prof. Athol Kemball Return of the Relativity Jedi!

Last time: explaining Hubble–an expanding universe *Q: what is the cosmic scale factor? Q: what does it measure? Q: what is its value today? in the past? the future?* at any time t, distance ℓ between A and B is

 $\ell(t) = a(t) \times \tilde{\ell_0}$ AB distance at t scale factor present AB distance time varying time varying fixed once and for all

cosmic time today $t = t_0$: scale factor $a(t_0) = 1$ in cosmic past $t < t_0$: scale factor a(t) < 1in cosmic future $t > t_0$: scale factor a(t) > 1

Expansion: Einstein \rightarrow Hubble

Somewhat technical derivation:

for two arbitrary observers (e.g., "galaxies") scale factor gives distances $\vec{r}(t) = \vec{r}_0 a(t)$ so velocity is

$$\vec{v}(t) = \Delta \vec{r} / \Delta t = d\vec{r} / dt \equiv \dot{\vec{r}} = \vec{r}_0 \dot{a}$$
(1)

with shorthand notation: time rate of change $\dot{a} = da/dt$

but we can rewrite this as

$$\vec{v}(t) = \frac{\dot{a}}{a} a\vec{r_0} = H(t)\vec{r}$$
(2)

 $_{\omega}$ Q: which means?

We have proven that at time tobservers at distance r recede at speed

$$v(t) = \frac{\dot{a}}{a} \ a \ r_0 = H(t) \ r(t)$$
 (3)

which means...

- \Rightarrow In expanding U, everyone observes Hubble law!
- now interpret "Hubble parameter" H(t) as

$$H(t) = \dot{a}/a \tag{4}$$

expansion rate at time t

- $H(t_0) = H_0$ = expansion rate today
- but expansion rate need not be (and usually isn't) constant!

4

Life in an Expanding Universe

much of a cosmologist's job: imagining life in an expanding, homogeneous, isotropic universe

starting today: consider effects of expansion on contents of universe

- light ("radiation")
- ordinary matter
- dark matter
- ...and anything else

First stop: light

every photon has its own wavelength λ

^{on} Q: would expansion affect λ ? if so, how? Q: and thus how would this affect light from galaxies?

Redshifts

wavelengths are lengths! ...it's right there in the name! expansion stretches photon λ

and thus: wavelengths become *longer* over time!

consider light emitted with λ_{em} from distant galaxy

- Universe expands while light en route to us
- and thus the wavelength stretches too
- so we observe longer $\lambda_{\rm obs} > \lambda_{\rm em}$
- \Rightarrow we see light as *redshifted!*
- cosmic expansion is true origin of galaxy redshifts!
 not really Doppler effect!

Redshifts: with Math

all lengths grow in proportion to cosmic scale factor including wavelengths: $\lambda \propto a$ so that $\lambda(t) \propto a(t)$

if emit at $t_{\rm em}$, then $\lambda(t) = \lambda_{\rm emit} a(t) / a(t_{\rm em})$

if observe later, $\lambda_{obs} = \lambda_{em} \ a_{obs}/a_{em}$ measure redshift today:

1

$$z = \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} = \frac{1 - a_{\text{em}}}{a_{\text{em}}} \Rightarrow a_{\text{em}} = \frac{1}{1 + z}$$

Scale factor \leftrightarrow redshift correspondence

- light seen with redshift z was born when the cosmic scale factor was a = 1/(1+z)
- light born at cosmic scale factor a will be seen with redshift z = 1/a 1

www: Sloan Digital Sky Survey spectra

www: quasar recordholder

Example: most distant quasar has z = 6.4 \rightarrow scale factor a = 1/(1 + 6.4) = 0.135interparticle (intergalactic) distances 13.5% of today! \rightarrow galaxies 1+6.4=7.4 times closer squeezed into volumes $(7.4)^3 = 400$ times smaller!

00

Recall from General Relativity, black hole discussions gravitational redshifting often accompanied by... *Q: what? and how might you observe this?*

Cosmic Time Dilation

GR: gravitational redshifting goes hand-in-hand with gravitational time dilation

 \rightarrow i.e., redshifted objects also appear to have slow clocks and blueshifted objects appear to have fast clocks

Cosmic time dilation observed! And only recently!

Challenge: need "standard clock" in order to know

that it's running slow

S

Tool: exploding stars (supernovae) – know timing of brightness observe high-z supernovae, see lengthening of duration in explosion and aftermath! Woo hoo!

Q: how does expansion affect photon energy? Q: for blackbody, how does expansion affect T? hint: $T \leftrightarrow \lambda$ connection?

Expansion and Radiation Energy & Temperature

since $E_{\gamma} = hc/\lambda \propto 1/\lambda$, then $E_{\gamma} \propto 1/a \rightarrow$ photon energy redshifts, i.e., decreases with time

for thermal radiation, Wien's law: $T \propto 1/\lambda_{max}$ so $T \propto 1/a \Rightarrow T$ decreases \rightarrow U cools! the universe cools as it expands

today: cosmic thermal radiation peaks at $\lambda \sim 1 \text{ mm}$ "cosmic microwave background" radiation (CMB) CMB temperature today: $T_0 = 2.725 \pm 0.001 \text{ K}$ $\approx 3 \text{ degrees above absolute zero}$

in past \rightarrow CMB, universe hotter: ⁵ distant but still "garden variety" quasar: z = 3"feels" T = 8 K (effect observed!)

iClicker Poll: A Pop Fly

A ball is launched upwards from the Earth's surface

What will happen later?

- A it will eventually fall back down
- B it will leave earth and never return
- C either (a) or (b), depending on launch speed

Cosmodynamics II

a(t) gives expansion history of the Universe but: How does scale factor a(t) grow with time?

Cosmic Evolution: Intuition

Ballpark analogy: a pop fly*Q: what are possible fates?Q: what factors influence which occurs?*

Q: how would we predict which will occur?

The Universe is a pop fly! Given current expansion of the Universe *Q: what are possible future outcomes? Q: what factors influence which occurs?*

Q: how would we predict which will occur?

Gravity & Fate: Baseball vs Cosmology

Pop fly: upgoing ball in Earth's gravity field; possible fates: (1) fall back (2a) leave Earth; $v \neq 0$ at infinity (2b) leave Earth; $v = 0 \rightarrow$ "barely escape"

Factors: gravity (downward) vs inertia (upward)

How predict? Pop Fly gravity \rightarrow escape speed $v_{esc} = \sqrt{2GM/R}$ inertia \rightarrow launch speed v_0 \rightarrow fate set by ratio v_{esc}/v_0

What about the Universe?
 [™] same ideas! Gravity vs inertia!
 will find similar key: gravity/inertia ratio

Cosmic Gravity and Expansion

consider two objects today, say two galaxies presently at some distance r_0 , say 100 Mpc

right now moving apart due to cosmic expansion at speed $v_0 = H_0 r_0$

imagine "turning off" gravity—then: Q: what are speeds at earlier times? later times?

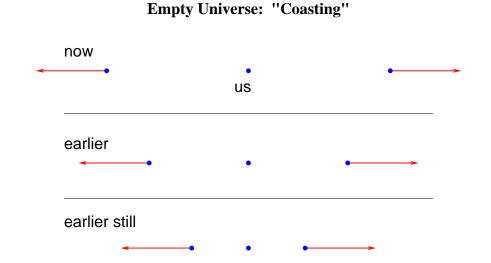
Q: what sort of Universe (not necessarily ours!) [↓] would actually have no gravity? Hint–what's the source of gravity?

Matter-Free "Empty" Universe

Gravity source is *mass* so a universe without mass has *no gravity* \Rightarrow this corresponds to an *empty universe* with density $\rho = 0$

Obviously, this cannot be our Universe! Q: why not?

But: this case still useful:


- same as the "egoist" universe discussed earlier
- corresponds to a universe in which expansion (inertia) is much more important than gravity

15

No matter \rightarrow no attraction between galaxies

- \rightarrow nothing to change galaxy speeds
- \rightarrow galaxies "coast" keeping constant velocity
- \Rightarrow same speeds in past

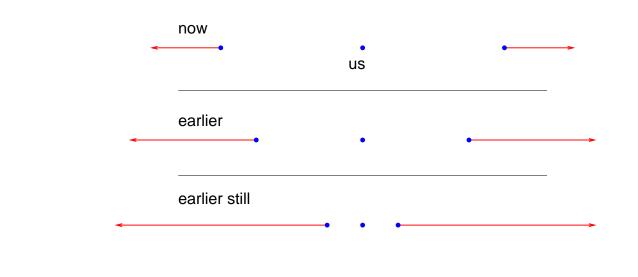
16

expansion rate: neither accelerated nor decelerated

Q: what is the final fate of such a Universe?

Empty Universe: Final Fate

in "empty" universe, galaxies coast forever
 i.e., expansion continues without slowing or stopping
 ⇒ the universe expands forever!


everything ever more spread out Universe becomes ever more empty and cold \rightarrow known as "the Big Chill"

Q: so what do we expect in the real Universe? Q: would galaxy speed be different in past?

Ordinary Gravity and Matter

The real universe has galaxies with mass \rightarrow attract each other

- \rightarrow inward gravity slows expansion
- \rightarrow speeds constantly *decreasing*, galaxies *decelerating*
- \Rightarrow to achieve observed speed today, had to be *faster* in past!

18

expansion rate: decelerated

A Denser Universe

now imagine we cram *more galaxies & mass* in the every bit of cosmic volume today

this corresponds to a universe with *larger density* ρ

Q: will this change what we infer about the cosmic past? if so, how?

A High-Density Universe: the Past

higher density \rightarrow more galaxies closer together but every galaxy exerts gravity force on all others so higher $\rho \rightarrow$ closer \rightarrow stronger gravity

and for matter: stronger gravity = stronger attraction and thus more drastic slowdown of expansion

so: for a *high-density* Universe, in the past galaxies must have moved *even faster* than in a low-density Universe

 $_{N}$ Q: what about the future in a low- ρ universe? what is it's fate?

A Low-Density Universe: the Future

We have seen: in a real universe with matter (and thus nonzero density $\rho > 0$) the attraction of gravity *slows* expansion

and thus:

21

- in the *past*, galaxies moved faster than now, and so
- in the *future*, galaxies will move *slower* than now

in a *low*-density universe:

- expansion slows, but never stops
- low-density → weak gravity too weak to overcome inertia!
- fate: expand forever, but speeds slower than now Big Chill strikes again

Q: how will the future and the fate be different in a very high- ρ universe?

A High-Density Universe: the Future

in a *high*-density universe:

- high density → strong gravity strong enough to overcome inertia!
- expansion slows until *stopping* momentarily
- but gravity will not stop! galaxies still attract each other!
- galaxies now move *toward* each other
- Universe begins to *contract* as they get closer, gravity stronger \rightarrow galaxies faster
- continues until Universe *collapses* on itself!
 fate known as the **Big Crunch**

 $_{\rm N}$ Q: what lessons do we draw about cosmic history and evolution?

Density and Destiny

We have seen:

- a high-density universe has a different expansion history than a low-density universe
- namely: a normal-matter high- ρ universe decelerates & slows more rapidly than a low- ρ universe and expanded *even faster* in the past
- the future fate of the cosmos is very different depending on the cosmic density

Lessons:

- different cosmic fates are possible!
- the evolution and fate of the Universe depends on what's in the Universe
- 23
- namely: cosmic fate depends on cosmic density
- weight is fate! density is destiny!

Math Alert!

the next few slides are more math-y than usual and are aimed students with more technical backgrounds

see how much of the math you can follow but don't worry about parts you *don't* follow

but *do* understand the basic ideas that go into the analysis, and what we get out

strategy: Newton says: F = maapply this to a Universe that is

- homogeneous
- 25
- expanding

Cosmic Evolution: Quantitative Analysis

full description: comes from General Relativity quick 'n dirty: Non-relativistic (Newtonian) cosmology

at time t, pick arbitrary point as origin $\vec{R} = 0$, enclose in arbitrary sphere of radius R(t): diagram: sphere, R

enclosed mass $M(R) = 4\pi/3 R^3 \rho = const$ consider a small "test" mass m on edge of sphere "feels" gravity due to sphere mass Q: what is Newtonian acceleration of test mass?

26

Newtonian Cosmodynamics

a mass m accelerates due to force: $m \times \text{accel} = F$ if force due to gravity-free fall-then $F = GM(R)m/R^2$ and so acceleration is

$$m\ddot{R} = -\frac{G \ M(R)m}{R^2} \tag{5}$$

where - sign reminds us gravity is *attractive* Q: how?

but note-"test" mass cancels (equivalence principle), so

$$\ddot{R} = -\frac{G \ M(R)m}{R^2} = -\frac{4\pi}{3}G\rho R$$
(6)

27

Newton sez:

28

$$\ddot{R} = -\frac{4\pi}{3}G\rho R \tag{7}$$

Hubble & Einstein say:

Universe is expanding, so sphere radius moves according to scale factor: $R(t) = a(t) R_0$

$$\ddot{a}R_0 = -\frac{4\pi}{3}G\left(\rho + 3\frac{P}{c^2}\right)aR_0 \qquad (8)$$
$$\ddot{a} = -\frac{4\pi}{3}G\left(\rho + 3\frac{P}{c^2}\right)a \qquad (9)$$

- R_0 cancels! scale factor accel indep of sphere size! had to be this way \rightarrow cosmo principle
- \bullet Einstein adds term with pressure P

Q: what is Newtonian energy of test mass?

Newtonian Cosmodynamics II: Energy

test mass m at edge of gravitating sphere has energy

$$kinetic + potential = total$$
(10)

$$\frac{1}{2}mv^2 - \frac{GMm}{R} = E \tag{11}$$

solve for speed v:

29

$$v^{2} = 2\frac{GM}{R} + 2\frac{E}{m}$$
 (12)
= $\frac{8\pi}{3}G\rho R^{2} + 2\frac{E}{m}$ (13)

Q: what do Hubble and Einstein say about v?

Newton says:

$$v^{2} = \frac{8\pi}{3}G\rho R^{2} + \frac{2E}{m}$$
(14)

Hubble and Einstein say:
speed
$$v = HR = \frac{\dot{a}}{a}R$$
, so
$$H^2 R^2 = \dot{R}^2 = \frac{4\pi}{3}G\rho R^2 + \frac{2E}{m}$$
(15)

expansion technology: $R(t) = a(t)R_0$

$$H^2 a^2 = \dot{a}^2 = \frac{4\pi}{3} G\rho a^2 - K \tag{16}$$

30

The Friedmann Equations

Friedmann Acceleration Equation

cosmic acceleration
$$=$$
 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + \frac{3P}{c^2}\right)$ (17)

important features:

• *Q*: significance of – sign?

Friedmann Equation ("Energy Eq.")

(cosmic expansion rate)² =
$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2}$$
 (18)

where K is a constant

31

• Q: how does expansion rate depend on contents of U?

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right) \tag{19}$$

note – sign:

- due to attractive nature of gravity
- galaxy gravity on each other slows expansion

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2} \tag{20}$$

- for any time t, relates expansion rate H(t) = change in a to constant K and values of $\rho(t), a(t)$ at t
- cosmic contents (density) influences expansion
- K term can be important or zero!
 value, sign of constant K has to be measured

32

Q: so what's the big picture–what just happened?

Post-Math Aftermath

What just happened?

Inputs: • Newton's laws

- homogeneous, isotropic Universe, that is
- expanding

Outputs: Friedmann equations expressions for how scale factor *a* changes with time

- expansion rate: time change of a
- acceleration rate: time change of expansion

These give a precise mathematical statement $\[mathcal{\omega}\]$ of what we already found: