Astro 350 Lecture 26 Oct. 29, 2012

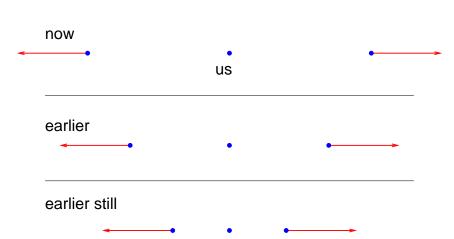
Announcements:

- HW 7 due now (extended!)
- good news: no HW or discussion this week
- bad news: Hour Exam 2 on Friday, info online
- apologies for canceled class Friday

Last times:

 \vdash

- *Q*: what is the cosmic scale factor?
- Q: what determines how it changes with time?
- Q: how is the Universe like a pop fly?
- Q: time changes of galaxy speeds in empty U?
- Q: time changes of galaxy speed in U with matter?
- *Q*: fate of *U* with low matter density ρ ? high ρ ?

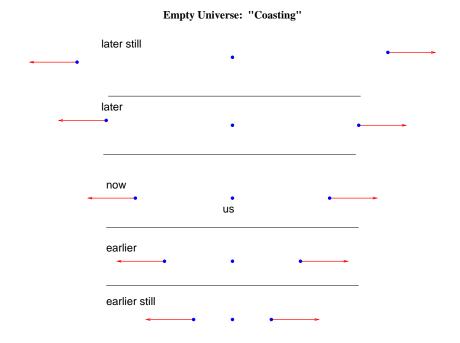

at any time t, distance ℓ between A and B is

 $\ell(t) = a(t) \times \tilde{\ell_0}$ AB distance at t scale factor present AB distance time varying time varying fixed once and for all

cosmic time today $t = t_0$: scale factor $a(t_0) = 1$ in cosmic past $t < t_0$: scale factor a(t) < 1in cosmic future $t > t_0$: scale factor a(t) > 1

Matter-Free "Empty" Universe

No matter \rightarrow no attraction between galaxies \rightarrow nothing to change galaxy speeds \rightarrow galaxies "coast" keeping constant velocity


Empty Universe: "Coasting"

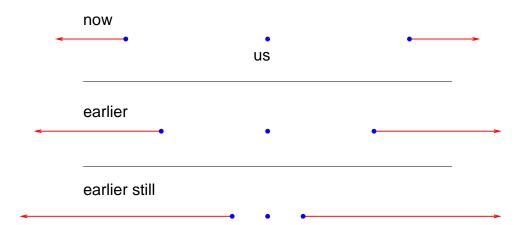
expansion rate: **neither** accelerated **nor** decelerated

ω

Q: plot of a vs t for this universe? Q: fate of such a universe? Why?

empty universe fate: no matter \rightarrow no gravity to slow galaxy motions the **universe expands forever**!

everything ever more spread out

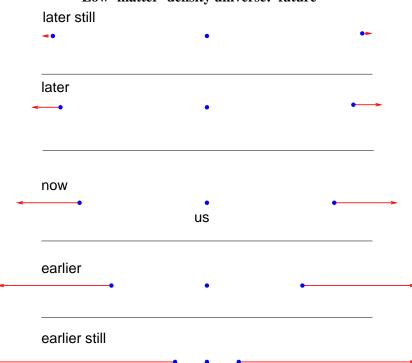

^b Universe becomes ever more empty and cold

 \rightarrow known as "the Big Chill"

Matter-full Universe

The real universe has galaxies with mass \rightarrow attract each other \rightarrow inward gravity slows expansion

- \rightarrow speeds constantly *decreasing*, galaxies *decelerating*
- \Rightarrow to achieve observed speed today, had to be *faster* in past!


Normal Gravity and Matter: Decelerating Universe

φ expansion rate: decelerated
 Q: plot of a vs t for this universe?
 Q: fate of such a universe? why?

Low-Density Universe: Fate

in a *low*-density universe: weak gravity

- expansion slows, but never stops
- fate: expand forever, but speeds slower than now

High-Density Universe: Fate	High-matter-density universe: fut	ure
in a <i>high</i> -density universe:	later still	•
• high density $ ightarrow$ strong gravity		
strong enough to overcome inertia!	later	
 expansion slows until stopping momentarily 		
 but gravity will not stop! 		
galaxies still attract each other!	now •	•
 galaxies now move toward each other 	us	
 Universe begins to contract 	earlier	
as they get closer, gravity stronger $ ightarrow$ galaxies faster	• •	•
 continues until Universe collapses on itself! 	earlier still	
fate known as the Big Crunch	• • •	

Q: plot of *a* vs *t* for this universe?

Q: what lessons do we draw about cosmic history and evolution?

Density and Destiny

We have seen:

- a high-density universe has a different expansion history than a low-density universe
- namely: a normal-matter high- ρ universe decelerates & slows more rapidly than a low- ρ universe and expanded *even faster* in the past
- the future fate of the cosmos is very different depending on the cosmic density

Lessons:

- different cosmic fates are possible!
- the evolution and fate of the Universe depends on what's in the Universe
- ∞
- namely: cosmic fate depends on cosmic density
- weight is fate! density is destiny!

The Friedmann Equations

Friedmann Acceleration Equation

cosmic acceleration
$$=$$
 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + \frac{3P}{c^2}\right)$ (1)

important features:

• *Q*: significance of – sign?

Friedmann Equation ("Energy Eq.")

(cosmic expansion rate)² =
$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2}$$
 (2)

where K is a constant

• Q: how does expansion rate depend on contents of U?

ဖ

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right) \tag{3}$$

note – sign:

- due to attractive nature of gravity
- galaxy gravity on each other slows expansion

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2} \tag{4}$$

- for any time t, relates expansion rate H(t) = change in a to constant K and values of $\rho(t), a(t)$ at t
- cosmic contents (density) influences expansion
- K term can be important or zero!
 value, sign of constant K has to be measured

10

Q: so what's the big picture–what just happened?

Post-Math Aftermath

What just happened?

Inputs:

- Newton's laws
- homogeneous, isotropic Universe, that is
- expanding

Outputs: Friedmann equations

expressions for how scale factor a changes with time

- \bullet expansion rate: time change of a
- acceleration rate: time change of expansion

These give a precise mathematical statement of what we already found:

[±] in the expanding universe: galaxies have inertia resist change in speed gravity acts to change speeds

Here endeth material on Hour Exam 2

Studying the History of Cosmic Expansion

Recall: Friedmann sez that at any cosmic "moment" ("epoch" – measured by time t and/or redshift z) the cosmic expansion H directly related to cosmic contents ρ

So: imagine we could measure expansion rate Hat many different epochs, finding H(z) at many z

this determines the cosmic expansion history then Friedmann \rightarrow density history, e.g, $\rho(z)$

 \star cosmic motion \leftrightarrow cosmic contents

- $\frac{1}{\omega}$ * expansion measures cosmic density!
 - * can compare with expectations if $\rho = \rho_{matter} + \rho_{radiation}$

iClicker Poll: Effect of Dark Matter

We have seen that galaxies are *mostly* made of *dark matter*, which holds galaxies together

compared to a universe with only the visible galaxies the effect of dark matter should be to?

- A add gravity, slowing expansion over time
- В

14

- add gravity, speeding up expansion over time
- **C** reduce gravity, slowing expansion over time
- D reduce gravity, speeding up expansion over time

Expansion Archaeology

Goal: measure expansion rate at past times

Strategy:

we have seen: Hubble's law v = H r: always true even though v, H, r all change over time but as you look at distant objects light travel time becomes large ("time machine effect") \rightarrow no longer probe present-day expansion rate $H_{today} = H(t = t_0) = H(z = 0) = H_0$ but rather expansion in past $H(t_{past}) = H(high - z)$ \Rightarrow Can use this to get expansion history key requirement: need distance r to high-z objects

15

Q: what techniques are available?

Supernovae and Cosmodynamics

goal: measure expansion out to high z

key tool: standard candle \equiv object of known L measure flux F, then $d_{lum} = \sqrt{F/4\pi L}$

need objects which:

- have fixed L indep of z, environment
- can see at high $z \rightarrow$ high $L \rightarrow$ supernova explosions
- Massive stars → SN: Type II bright, but: L varies w/ mass, metallicity X bad idea!
 SN Type Ia: exploding white dwarf
 - WD \rightarrow fixed mass of $^{56}\rm{Ni}$ (radioactive) \rightarrow $^{56}\rm{Fe}$
- decay sets $L(t) \rightarrow std$ candle!

```
www: SN 1994D
```

iClicker Poll: Past Expansion Rate

in the real universe, with gravity

How should the expansion rate change with time?

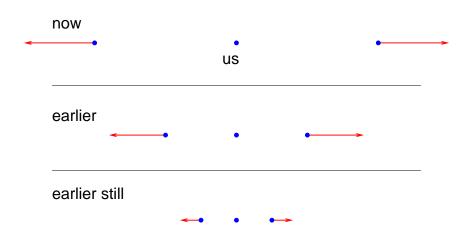
A expansion slows with time \rightarrow faster in past

- **B** expansion constant with time \rightarrow same in past
- С

expansion speeds up with time \rightarrow slower in past

SN Ia and Expansion History

Pop fly Analogy


galaxies moving apart today \leftrightarrow upgoing ball would coast forever, but gravity attractive slowing galaxies \leftrightarrow slowing ball \rightarrow faster in past

SN Data: distance indicator $(d_{\text{lum}}(z)$ "luminosity distance") traces expansion history $H(z) = \dot{a}/a$

- but expansion $H = \frac{\text{rate of change in } a}{\text{so variation in } H \rightarrow \text{change in "velocity"}}$: a kind of "velocity"
- *H* history measures cosmic acceleration
- \vec{a} expectations: acceleration = $\ddot{a}/a = -\frac{4\pi G}{3}\left(\rho + 3\frac{P}{c^2}\right)$ $\Rightarrow \ddot{a} < 0$ gravity slows expansion

Distant Supernovae: The Verdict

Our actual observed universe: galaxies *slower* in past!

Observed Universe: Accelerating

SN data: H(z) smaller in the past (high z and small t) $\Rightarrow H(z)$ increases with time! $\Rightarrow \ddot{a} > 0!$

⁶ expansion rate: **accelerated!**

Q: what would this mean in the pop fly analogy?

Accelerating Universe: Pop Fly Analogy

Pop fly: ball thrown up in the air ordinary baseballs: made of matter, feel Earth's gravity \rightarrow moves ever slower on the way up \rightarrow decelerated

but the Universe does the opposite! a pop fly acting like the Universe would get *faster* as it gets higher! and so would launch itself to space!?!

Radiation Density and Cosmic Expansion

radiation = stuff moving at or near speed c

relativistic: $v \sim c$, $kT >> mc^2$

if particles not created/destroyed,

then total number const

• number density $n = N/V \propto a^{-3}$

energy density $\varepsilon_{\gamma} = E/V = E_{\gamma}n_{\gamma}$ where E_{γ} is the average energy of *one* particle but we saw for photons: $E_{\gamma} \propto 1/a$ $\rightarrow \varepsilon_{\gamma} \propto a^{-4} \propto T^{4}$ if thermal

22

but mass-energy equivalence $E = mc^2$ says that

$$m = \frac{E}{c^2}$$
(5)
$$\frac{m}{V} = \frac{E}{V}\frac{1}{c^2}$$
(6)
$$\rho = \frac{\varepsilon}{c^2}$$
(7)

and so

$$\frac{\rho_{\rm rad} = \varepsilon_{\rm rad} / c^2 \propto a^{-4}}{(8)}$$