Astro 350 Lecture 31 Nov. 12, 2012

Announcements:

- **Discussion 9** due Wednesday
- Homework 9 due at start of class Friday

Last time: Penzias & Wilson accidentally discover CMB but have no idea what it is!

Q: how is the CMB cosmic? microwave? background? radiation?

- *Q:* What are observed CMB properties?
- , Q: What is it "trying to tell us" ?

CMB discovered accidentally in 1965 www: 2-page paper

- microwaves = radio photons
- apparent brightness = flux is **isotropic** \rightarrow same glow across the skky
- spectrum is **blackbody** = thermal

Fun CMB Trivia

- your TV set "sees" the CMB!
- \rightarrow cosmic signal is about 10% of 'snow'' in ''empty'' channel

Lessons:

N

- Universe filled with EM radiation (light)
- Universe has temperature

Raises new questions:

- How did the Universe get a temperature?
- When was this radiation created?
- Gasses cool when they expand—how hot was the early Universe?

inner space/outer space connection

Give me an atom, and I will construct the universe. - Cosmologist (Full-Time!) George Gamow

Recall behavior of *cooling matter*:

Hot quarks \rightarrow neutrons, protons, $e \rightarrow$ nuclei,e=plasma \rightarrow atoms

Spoiler alert: this is the history of the Unvierse!

The atomic era

ŝ

now radiation chilly $T \approx 3$ K; but hotter in past! $T \propto 1/a = 1 + z$

Q: hydrogen gas at low T? at high T?

Q: cosmic transition in gas? effect on radiation?

Thermal Radiation in the Early Universe

Recall: light \leftrightarrow heat connection namely: "glow" of object at T = blackbody radiation peak emission (color): $T \propto 1/\lambda_{peak}$ but recall: photons have $E_{\gamma} \propto 1/\lambda$, so $T \propto E_{\gamma}$ (check!)

What color was the cosmic thermal glow? When Universe $T \sim few1000$ K, similar to $T_{surface,\odot}$ \rightarrow peak emission is visible to eye! \rightarrow you could have seen cosmic radiation (but better wear the asbestos suit...) Key issue:

• how do the thermal photons interact with the hydrogen?

In particular:

• how does light respond to a neutral vs ionized gas?

iClicker Poll: Light Through a Flame

Demo: pass projector light thru flame How will the flame region look on screen?

A darker

B brighter

same as rest of screen

Q: implications for cosmic recombination?

σ

Early Universe

early U hotter, denser

- particle motions ever more energetic: $E_{\text{particle}} \propto T$
- more crowded \rightarrow particle collisions more frequent, violent

Ordinary matter today: cold U, hydrogen at 3K is neutral gas but early enough: H ionized \rightarrow free p + e plasma \rightarrow at some time, had to be transition ionized \rightarrow neutral

Cosmic radiation today:

 $\overline{}$

doesn't interact with neutral H (only absorbed at special λ) but when ionized: free *e* scatter photons efficiency *Demo*: light through bigger flame than last time

Light Scattering in Gas vs Plasma

Neutral gas is (mostly) transparent

e.g., look around the room – can see opposite side because neutral air molecules are (essentially) transparent to visible light

...but..

Ionized gas (plasma) is opaque

e.g., can't see thru flame, neon light

Why?

 ∞

- \triangleright neutral atoms only absorb at characteristic λ (''lines'') otherwise ''ignore'' light
- ▷ in plasma, free electrons abundant very strongly scatter light → photon path "scrambled" cannot see through electron "fog"

Implications for cosmology:

- cooling early universe undergoes transition from ionized to neutral
- and so also undergoes transition from opaque to transparent

Notice the inner space/outer space interplay:

 \rightarrow lab experiments on electron behavior set cosmic history!

Implications...

early universe uniformly filled with photons

- *Q*: what are photon paths before recombination?
- *Q*: what are photon paths after recombination?

ဖ

CMB: Photon Paths?

before recombination:

photons constantly scattered can't travel far: "cosmic fog" we see: only nearby sources

after recombination:

photons no longer scattered travel freely: "the fog lifts" at time t after:

5 travel distance d = ct

Q: which photons seen at *t* (where/when emitted)?

Q: what happened to the photons that were here at t_{recomb} ?

Q: who can see "our" photons now, and where are these observers?

Last Scattering Surface

iClicker Poll: The End of the CMB?

Will there be a time when we *cannot* see any more CMB photons?

maybe, depends on future expansion history

can *always* see CMB photons last scattering surface distance d = ctadvances outward as universe ages! redshifts as the universe expands

Thus:

- CMB = snapshot of U at recomb.!
 baby picture of the Universe!
- γ s last scattered at $t_{rec} \sim 400,000$ yr: ancient!
- came from $d_{\rm Is} \approx d_{\rm horizon} \sim ct_0 \sim$ "cosmic (particle) horizon" i.e., the edge of the observable universe! "as far as the eye can see"

CMB Temperature Mapping: Predictions

cosmo principle: U. homog, isotropic Q: if exact, what is CMB T pattern on sky?

but U. not homogeneous on small scales
what if density fluctuations on small scales:
Q: what happens to a photon coming from an overdensity?
Q: an underdensity?
Q: how would these effects appear on the CMB T pattern?

www: CMB temperature maps

CMB Temperature Mapping: Observations

```
observe: CMB T very uniform!
```

```
\rightarrow U. very isotropic!
```

turn up contrast:

• "dipole": hotter on one side of sky, cooler on other max diff $\Delta T = \pm 3.4 \times 10^{-3}$ K $\rightarrow \Delta T/T \sim 10^{-3}$ interpretation: *Q: what do you think?* hint: what really observed is **spectrum**: λ_{peak} slightly smaller on one side of sky, slightly larger in the

16

other side

```
CMB dipole:
due to our motion w.r.t. cosmic rest frame
"peculiar vel" v = 370 km/s = 0.83 million mph!
Q: what would contribute to this peculiar velocity?
```

```
subtract dipole, then: more fluctuations
occur at all angular scales
typical \Delta T \sim 2 \times 10^{-5} K
\Delta T/T \sim 10^{-5}: tiny!
discovery 1991 www: COBE
precision measurements 2003-today www: WMAP
```

CMB not perfectly isotropic!

```
Q: what does this tell about Early Universe?
```

17

CMB Temperature Fluctuations ("Anisotropies")

CMB temperature differences in different directions

$$(\Delta T)_{\text{avg}} = (T_{\text{obs}} - T_{\text{avg}}) \approx 0.00001 T_{\text{avg}}$$
(1)

i.e., differences are in 5th decimal place! very tiny effect, a huge technology challenge to measure

Small fluctuations are big deal!

18

what causes T differences? differences in density! so measuring $\Delta T \rightarrow$ cosmic density fluctuations existed

tiny density fluctuations at rec \rightarrow "seeds" of galaxies, clusters, superclusters, you, me today! www: 2006 Nobel Prize in Physics