Astro 350 Lecture 34 Nov. 26, 2012

Announcements:

Н

- Homework 10 due Friday at start of class
- Discussion 10 Wednesday

Before break: special topic-antimatter

Today: getting back in the flow

"running the movie backward" into the cosmic past

- *Q: ordinary matter behavior–cold to hot?*
- Q: implications for cosmic evolution?
- Q: how's this working for us?

Cold Hot atoms \rightarrow ions=e+nuclei \rightarrow $n + p + e \rightarrow$ quarks \rightarrow ???

As matter gets *hotter* collisions *more violent* ground to smaller bits

N

Universe should follow reverse trend: *cooling matter*:

Hot ??? \rightarrow quarks \rightarrow $n + p + e \rightarrow$ nuclei,e = plasma \rightarrow atoms

```
the story so far:
ionized → neutral transition
also opaque → transparent
releases "fossil" radiation: CMB
→ observed! has thermal spectrum! cosmic success story!
```

The Nuclear Force and Nuclear Structure

In nucleus:

Electrical repulsion between protons (like charges) but stable: repulsion overcome by attractive force **nuclear force** between p, n

nuclei are quantum objects governed by nuclear force i.e., like "juiced" atoms, with stronger force

- still energy levels: ground, excited states
- stronger force \rightarrow much much larger binding energy BEi.e., "sticking strength" = energy input to rip apart
- still unbound if given energy > BE

ω

The Ties that Bind

Nuclear force + quantum levels \rightarrow determines binding of each nucleus www: chart of nuclides

weakest binding: deuterium d = n+p

4

strongest binding in a light nucleus (below carbon): ⁴He = 2n+2p⁴He = α "alpha particle" tighly bound = very stable consequently, no stable nuclei at mass 5, 8 "would rather be alphas!" mass 5 decays $\rightarrow \alpha + n$ or p mass 8 decays $\rightarrow 2\alpha$

Cosmic Lingo: Fancy Name for Ordinary

neutrons and protons are not elementary \rightarrow both made of 3 quarks other 3-quark particles exist, but are unstable \rightarrow decay to *n* or *p*

any particle made of 3 quarks: baryon www: lists of known baryons

in practice: under most conditions, baryons = n or por things made of n and p: atoms, people, stars, galaxies

so: to cosmologists

СЛ

baryons = "made of atoms" "ordinary" matter \neq dark matter

Primordial Nucleosynthesis

Primordial nucleosynthesis, a.k.a. Big bang nucleosynthesis (BBN): production of lightest elements H, He, Li in the early U.

extrapolate expanding U, containing matter, radiation back to $t \sim 1 \text{ sec} \rightarrow \text{U}$ is giant nuke reactor!

basic story: transition from "ionized" free n and pto "neutral" bound nuclei, largely ⁴He

 $_{\circ}$ Q: at high (but not ultrahigh) T, what are cosmic ingredients?

Primordial Nucleosynthesis Initial Conditions

time t < 1 sec, temperature $T > 10^{10}$ K = 10 billion degrees

radiation

- "CMB" photons now gamma rays!
- also a sea of cosmic neutrinos! radiation density huge!
- $\rightarrow \rho_{\rm radiation} \gg \rho_{\rm matter}$ opposite of situation today ''radiation-dominated era''

matter

~

- ordinary (known) matter: only n, p, and e collisions too violent for complex nuclei and certainly much too violent for atoms
- dark matter: must be around, but weakly interacting

dark energy

must also be around, but if Λ -like, unimportant

iClicker Poll: Cosmic Fusion

primordial nuke: transition from free n, p to bound nuclei, through a series (chain) of reactions

Starting from p and n only, which nucleus is made first?

A deuterium:
$$d = np$$

C helium-4:
$${}^{4}\text{He}=\overline{nnpp}$$

[∞] D lithium-7: ⁷Li=
$$3p, 4n$$

Primordial Nucleosynthesis: Element Production

as the universe expands and cools,

n and p collisions weaker than $d=\boxed{np}$ binding

 \rightarrow at last d can survive: $n + p \rightarrow d$

then can combine d with n, p, and d to make heavier things

```
www: reaction network
```

flow \rightarrow most stable (tightest binding) = $\begin{bmatrix} 4 & \text{He} \end{bmatrix}$ essentially all $n \rightarrow ^4$ He BBN result: 25% of baryons in He, leftover $p \rightarrow$ H (75%) small traces of unburnt D, ³He, ⁷Li: amounts depend strongly on density of nuclei ("baryons") www: Schramm plot

9

Nothing heavier than lithium made-why?

Nuclear Freeze

nothing heavier than Li:

• no stable nuclei with masses 5,8 \Rightarrow don't make anything from $p + {}^{4}\text{He}$ or ${}^{4}\text{He} + {}^{4}\text{He}$

cooling universe → weaker collisions
 but combining nuclei with large charge
 requires large energy to overcome electrical repulsion

result: nuclear reactions shut down after lithium production ...and not even much of that!

"freezeout of strong interactions"

BBN Predictions: Executive Summary

Q: what are main predictions? qualitatively, quantitatively?

Q: where, when do they apply?

Q: what predictions "robust"/unavoidable?

Q: what would be involved in testing the predictions?

Q: what would it mean if BBN predictions confirmed? if not?

Q: what assumptions went into the calculation? ("Standard BBN")

□ Q: i.e., regarding dark matter? dark energy? neutrinos? additional element ary particles?