Astro 350 Lecture 40 Dec. 10, 2012

Announcements:

 \vdash

- Good news: now more homework!
- Bad news: Final Exam next Friday Dec 14, 8-11am here www: Final Exam Info online
- **ICES** available online please do it! I do read and use comments!

Last time: formation of cosmic structure

Q: fate of a perfectly homogeneous universe?

Q: how inhomogeneous was our *U* when *CMB* released (recombination)?

Q: evolution of a single spherical overdensity? underdensity Q: evolution of realistic universe?

if U perfect homogeneous initially then every place identical to every other place nowhere for galaxies to originate \rightarrow no "nucleation" sites

if U has one spherical uniform overdensity evolves as "sub-universe" with $\Omega>1$

- expands, but decelerates-"pulls away" from Hubble flow
- slows to a stop at max size
- then collapses, forms non-expanding bound object

real U begins with many tiny density fluctuations high ρ behaves like spherical overdensity amplified over time by gravity: **gravitational instability** *"the rich get richer and the poor get poorer"*

Ν

The Birth of Structure: Setting the Stage

CMB "picture" of U at 400,000 years confirms tiny density fluctuations everywhere, at all length scales these formed the "seeds" of galaxies, stars, people today

during *radiation domination* (early U):

in early U, most mass/energy in hot photons and neutrinos (radiation) expansion very rapid: too fast to overcome density fluctuations barely grow structure formation stalled

but as U expands, photons (and neutrinos!) redshift

ω

- and lose energy since $E_\gamma \propto 1/\lambda \propto 1/a$
- radiation density drops faster than matter density

- at $t \approx 75,000$ years, *matter domination* begins
- \Rightarrow expansion slows, fluctuations can now grow!
- \Rightarrow structure formation begins!
- *Q: cosmic components? how will they evolve?*

Structure Formation: Dark Matter

most cosmic matter is *dark matter* weakly interacting \rightarrow feels only gravity (almost) no collisions \rightarrow no pressure

once gravitational instability sets in dark matter fluctuations begin to grow galaxy "dark halos" form first!

the CMB gives a "snapshot" of the initial pattern of density fluctuations → random in space, but with definite patterns in fluctuations: ripples on all length scales

4

Q: given this, where do we expect structures to form?

Structure Formation Theory: Predictions and Tests

Most cosmic matter is gathered into dark halos and dark halos are where galaxies form \rightarrow galaxies themselves are much denser than the U on average and thus galaxies mark regions where cosmic density was initially higher than average

i.e., galaxies tell (roughly) where the initial "seeds" were

But: theories like inflation "sow the seeds" randomly i.e., no way to predict whether a specific point (x, y, z)will be an overdensity or underdensity

So: the mere presence of a galaxy neither verifies or $\ensuremath{^{\sigma}}$ refutes our models

Q: how can we overcome this problem?

key idea:

density seed prediction for any point is random

but: overall **pattern** of density fluctuations

is not at all random, but specifically predicted namely, can answer questions like this:

- if a galaxy found here, what is the *probability* of finding another galaxy 1Mpc away?
 i.e., what is the *pattern of clustering*?
- or can ask: what is the average "size" of a density fluctuation? technically: what is rms value of $(\rho \rho_{avg})^2 = \delta \rho^2$

In other words:

σ

since the initial seeds are random

embrace this by adopting a *statistical* description

appropriate for finding patterns amidst randomness

fluctuations initially present on all length scales

Q: what does this mean? what would it look like?

Q: what does this imply for how structures form? Hint: what are first objects to form, what happens afterwards?

Hierarchical Structure Formation

www: movies! structure growth over cosmic time

a "bottom-up" scenario small structures form first

but fluctuations on all scales:

 \rightarrow some groups of small structures are grouped together as part of a larger overdensity

these first objects feel each other's gravity merge to form larger structures ...which merge to form larger structures ...etc

www: cluster formation

00

dense regions connected by linear "filaments"
form knots in "cosmic web"
www: cosmic web

Q: how could we test if merging is how galaxies grow?

Evidence of Merging: Interacting Galaxies

Imagine galaxies today formed by merging of smaller objects in past

Then several predictions:

- in past (=large distances, high redshift): expect to see fewer large/high-mass galaxies, more small/low-mass galaxies
- today: some galaxies should be "caught in the act" of merging
- our own Galaxy should show signs of past and ongoing merging

iClicker Poll: The Urge to Merge?

Which signatures of merging do we actually observe?

I. in past-fewer large/high-mass galaxies, more small/low-mass galaxies

II. today-some galaxies "caught in the act" of merging

III. Milky Way show signs of past and ongoing merging

- III only
- C D E more than one of the above
 - none of these are observed

Galaxy Merging Confirmed!

Evidence for "bottom-up" galaxy assembly is plentiful!

- distant = early Universe: more small galaxies
- galaxy mergers observed today
 www: galaxy mergers
- Milky Way observed to "cannibalize" dwarf galaxies
 www: Sagittarius dwarf
 - www: Magellanic clouds

So far: only considered dark matter but observable parts of galaxies are baryonic = stars+gas

 $\overline{\aleph}$ Q: as structure formation begins, how will baryons and photons respond as dark matter structures begin to grow?