Astro 350 Lecture 35 Nov. 28, 2012

Announcements:

- Discussion 10 due today
- **Discussion 11** last one! Due next Wednesday
- Homework 10 due Friday at start of class

Last time: origin of the elements–primordial nucleosynthesis *Q: primordial? nucleosynthesis?*

Q: what's the twitter/text message version of what happens?

⊢

Primordial Nucleosynthesis: Executive Summary

Big Bang Nuke: a love story

- begin at early times and high density, temperature with a "soup" of protons p and neutrons n
- neutrons much less common: 7p for each n environment too hostile for love-lonely and sad :(
- but as the Universe cools, binding becomes possible $\rightarrow p$ meets n! sparks fly!
- p and n get together, and make elements mostly ⁴He = 2n + 2p: "favorite" p+n combo $\rightarrow n$ and p "prefer" to be in ⁴He if possible also traces of deuterium, lithium leftover
- but still some cosmic sadness some p "remain single," leftover to be hydrogen today

iClicker Poll: Neutron/Proton Equality

Main effect of BBN: ⁴He production n and p "prefer" to be in ⁴He if possible very tightly bound = stable nucleus

Imagine:

• initially equal amounts of n and p, i.e.,
$$n/p = 1$$

What elements will ultimately be produced and remain today?

A only hydrogen an no helium

- B only helium and no hydrogen
- ω
- some helium and some hydrogen

The Cosmic Neutron Dance

• if p for every n, so that n/p = 1then every pair of p can find a pair of n and make ⁴He, with *no* p *leftover* \rightarrow result is baryons are 100% ⁴He, 0% H \rightarrow not our universe! stars with *fewer* n than p

• now what if 2 p for every n, so that n/p = 1/2? *Q: how much* ⁴He? *leftover H*?

• now what if 7 p for every n, so that n/p = 1/7? Q: how much ⁴He? leftover H?

Q: what's the lesson?

if 2 p for every n, so that n/p = 1/2
then for every pair of n, there are 4p
make ⁴He, with 2 p leftover for each
→ result is 2 p (total mass 2) for every ⁴He (mass 4), and so
→ baryons are 66% ⁴He by mass, 33% H
→ still not our universe!

• our Universe: 7p for every n, so that n/p = 1/7then for every pair of n, there are 14pmake ⁴He, with 12 p leftover for each \rightarrow result is 12 p (total mass 12) for every ⁴He (mass 4), and so \rightarrow baryons are 25% ⁴He by mass, 75% H

 $_{\rm σ}$ Lesson: ⁴He set by n/p ratio!

BBN Predictions: Executive Summary

Q: what are main predictions? qualitatively, quantitatively?

Q: where, when do they apply?

Q: what predictions "robust"/unavoidable?

Q: what would be involved in testing the predictions?

Q: what would it mean if BBN predictions confirmed? if not?

Q: what assumptions went into the calculation? ("Standard BBN")

Q: i.e., regarding dark matter? dark energy? neutrinos? additional element ary particles?

BBN: Observations

to test BBN: measure primordial abundances

look around the room–not 75% H, 25% He. *Q: is this a problem? Why not?*

matter in solar system: mostly in Sun–mostly H, then He but: still have heavy elements *Q: is this a problem? Why not?*

Q: so how test BBN? What is the key practical issue? Q: when in cosmic history do we expect → the first "complications"?

BBN: Observations–Idealized

The past isn't dead. It isn't even past.

-- Cosmologist William Faulkner

BBN theory: after the first three minutes
the universe filled homogeneously with
H, He, and a little Li
→ these remain to this day as "fossils"
of nuclear reactions in the early universe
→ evidence from the early U is all around us!

BBN: Observations–Hard Reality

BBN theory: universal composition after ~ 3 minutes, $z \sim 10^9$ observations: abundances in real astro systems, redshifts $z \sim few$

the first non-BBN nucleosynthetic processing: \rightarrow when first stars turn on www: circle of life

problem: stars change lite elt abundances \rightarrow "pollution"

the solution:

Q: how to address this problem?

Q: if can measure abundances in a system, can you unambigu-

ously tell that stars have done some polluting?
 Q: how to tell observationally which systems least polluted?

stars also make heavy elements

stellar cycling: metals \leftrightarrow time \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive at 0 metals \rightarrow primordial

Helium-4

He atoms: tightly bound atoms, hard to excite electrons \rightarrow need relatively high energies to make observable lines \rightarrow need hot environment with strong collisions \rightarrow superheated gas in environment of massive, hot stars

need hot, metal poor gas: → metal-poor, dwarf irregular galaxies www: I Zw 18 **Transp:** *He emission lines*

 $Y = \rho(^{4}\text{He})/\rho_{\text{baryon}}$ and $Z = \rho(\text{metals})/\rho_{\text{baryon}}$ \Rightarrow correlated What correlation do you expect?

Transp: Y vs Z Q: significance of features?

Helium-4 Data: Trends and Implications

Data best fit by

$$Y = Y(Z) \simeq Y_0 + \frac{\Delta Y}{\Delta Z} Z \tag{1}$$

slope $\Delta Y/\Delta Z$: stellar nuke (avg stellar "helium per metal" output) intercept $Y_0 = Y_p$: cosmology (primordial He!)

combining all data: infer primordial abundance

$$Y_p = 0.249 \pm 0.009 \tag{2}$$

i.e., observe 24.9% of ordinary (baryon) mass to be in ${}^{4}\text{He}$

Assessing BBN: Theory vs Observations

BBN Theory:

• always get about 25% helium, 75% hydrogen

- \rightarrow amounts are nearly *independent* of amount (density) of baryons in the Universe
- but the trace amounts of deuterium and lithium (and ³He) do depend strongly on baryon density $\rho_{\rm B}$

So: can measure amount of deuterium
and this *tells us* the density of baryons
→ that is, deuterium "measures" the amount of ordinary matter in the Universe!

13

Deuterium (and helium) tell us that if $\Omega_{\rm B} = \rho_{\rm B}/\rho_{\rm crit}$ in range

$$0.040 \lesssim \Omega_{\mathsf{B}} \lesssim 0.050 \tag{3}$$

 \rightarrow baryon density is 4% to 5% of critical density

recap: extrapolated big bang to t = 1 s, predicted lite elts kinda amazing: not only qualitative agreement ("lotsa helium") but even detailed quantitative agreement with observations! Cosmo bragging rights: BBN is earliest probe!

BBN: Implications

Qualitatively

extrapolated big bang to t = 1 s predicted lite elts \rightarrow agreement with observations big bang working well back to 1 sec!

Quantitatively

observed lite elements select baryon density \Rightarrow 0.040 $\lesssim \Omega_B \lesssim 0.050$

- 1. $\Omega_B \ll$ 1: baryons don't close the U.
- 2. $\Omega_{lum} \sim 0.007 \ll \Omega_B$

15

baryonic dark matter hot (10^{6-7} K) intergalactic gas?

3. $\Omega_{matter} \approx 0.3 \gg \Omega_{B}$: non-baryonic dark matter

confirms: **most dark matter** is **not** made of atoms of any kind in any arrangement! \rightarrow must be exotic form of matter!

known matter = anything on the periodic table is a tiny fraction of the makeup of the cosmos!