Astro 350 Lecture 30 Nov. 9, 2012

Announcements:

- Homework 8 due now
- Discussion 9 due next Wednesday
- Homework 9 due at start of class next Friday

Last time: finished our cosmic future

now: back to the past

The Cosmic Past

So far: used data on present expanding universe to infer something about the future universe

Now turn back to past

Q: why might this be informative?

Q: how could this help us test cosmology?

Q: how do you expect the U to have been different in the recent past?

Q: what about the more distant past?

Can use Einstein and Friedmann to predict nature of past universe then can observe it, directly or indirectly \rightarrow will test (and learn more about) cosmology In the past, Galaxies closer together: a(t) < 1 U. was **denser**, also **hotter**

Recent past: still galaxies, but more cramped Distant past: stars, galaxies had to form before then: hot "soup" of cosmic ingredients

Infer that the Universe began in a **hot**, **dense** early state:

→ Big Bang!

The Big Bang

Note: some differences in how "big bang" term used

- some cosmologists: big bang is a process
 U expansion from a hot dense early state
 in that sense some would say still ongoing
- others: big bang is an *event* instant of cosmic time t = 0, when scale factor a = 0

Q: densities, temperature at t = 0?

Q: implications?

4

Note: Cosmology is global...

Transp: Big Bang in French Q: what's wrong with this picture?

Q: where did the big bang occur?

A Puzzling Measurement

Spring 1965:

- Rev. Martin Luther King Jr leads march on Selma AL
- Beatles play Shea Stadium
- first successful launch of unmanned Saturn I rocket
 nine Apollo Saturn V rockets went to the Moon 1968–1972
- astronomers Arno Penzias & Robert Wilson were using radio telescope to study interstellar gas clouds www: Penzias and Wilson at Bell Labs

made careful measurements, noticed that when pointing radio telescope ("horn") away from clouds signal readout dropped, but did *not* go to zero no matter where pointing "off source"

Q: what are possible explanations?

What is all this noise?

Bell Labs radio telescope reads out nonzero signal even when pointed away from any sources

Possibilities:

Problem with telescope?

- instrumental noise?
 Penzias & Wilson carefully checked system characterized noise—too small to explain signal
- contamination/damage to antenna?
 scraped off pigeon droppings

Result: after careful checking

- Penzias & Wilson could not explain away signal
 - → forced to conclude: Signal is real!

Penzias & Wilson reported their result in 2-page scientific paper www: their paper devoted to showing how they checked antenna noise and which made not attempt to interpret signal

mysterious radio signal found to be:

- isotropic (as far as they could measure) Q: meaning?
- unchanging with seasons Q: which implies what?

Q: what other properties of signal would be useful to measure?

Mysterious Radio Signal

mystery signal does not change with seasons

- \rightarrow not related to Earth, or solar system
- → comes from our Galaxy or beyond

in fact: all other know sources of radiation observed to lie *in front* of this mystery signal

- signal comes from great distance: cosmic
- signal is **background** to all else

signal found in radio: electromagnetic radiation

ightarrow essential to measure *spectrum* quickly done, found to have blackbody form! *Q: what's that?* peak around $\lambda_{\text{max}} \approx 1$ cm: **microwave** which corresponds to temperature $T \approx 3$ K *Q: hot or cold?*

Q: what does this all mean?

Cosmic Microwave Background Radiation

mystery signal: cosmic microwave background radiation = CMB Universe today filled with radiation

- isotropic had to be! confirms cosmological principle!
- blackbody = thermal = has temperature

CMB temperature: present measurement

$$T_0 = 2.725 \pm 0.001 \text{ K}$$
 (1)

note precision! cosmic temperature known to within better than 0.05%!

spectrum: blackbody www: CMB spectrum (FIRAS) purely thermal (so far): www: CMB spectrum residuals

CMB: enormously important cosmological clue and goldmine! need to figure out what it means

The Early Universe

For the rest of the course: look back to the past try to develop (and test!) understanding of what happened

Strategy: run the movie backwards

Inputs:

- known (or suspected) present contents of U
- known (or suspected) laws of nature

Output:

- "pre" dictions about the past behavior
- and consequences that are observable today
- 5 Q: present cosmic contents?
 - Q: how would each act in early U?

Looking Back

Cosmic Inventory: Universe today composed of

- ullet radiation: blackbody, $T\sim$ 3 K
- normal matter: mostly H and He
- dark matter: weakly interacting Q: why?
- dark energy: constant density (?)

Run movie backwards: in the past

- $\triangleright T$ higher
- > radiation, matter hotter, denser

normal matter: well studied in the lab!

known properties for different ρ , T

 \rightarrow use known physics to deduce

history of matter and radiation!

Temperature and Atoms

Universe has temperature! cold today, hotter in past

For a gas of atoms, as temperature goes *up*What is affect on average atom?

- A hotter = higher average speed, higher average energy
- B hotter = lower average speeds, higher average energy
- C hotter = higher average speed, lower average energy
- hotter = lower average speed, lower average energy

The History of Atoms

Today:

- normal matter* (i.e., made of atoms) is mostly gas mostly ($\sim 70\%$) hydrogen, with $\sim 28\%$ helium, 2% "metals"
- cosmic temperature $T \approx 3$ K
- cosmic average density very low: $ho_{\rm crit} \approx 10 m_{
 m hydrogen}/{
 m cubic}$ meter

Q: how do atoms behave in these conditions?

Q: in past, higher $T \& \rho$ —what transition expected?

Q: what sets transition temperature?

^{*}Tech lingo: "made of atoms (really, protons & neutrons)" = "baryonic"

The Atomic Age

laboratory atomic physics:

in atoms, electrons attracted, bound ("stuck") to nuclei

- takes energy input to rip apart, unbind
- well-defined "binding energy" needed to tear apart

```
So: in gas with particle energy < atomic binding energy i.e., kT < E_{\rm bind,atoms} \sim 1 eV (T \lesssim 10,000 K) \Rightarrow electrons bound to nuclei: atoms! i.e., electrically neutral gas particles
```

but if particle energy > atomic binding energy i.e., kT > 1 eV, T > 10,000 K atoms ripped apart \rightarrow gas of free e^- , nuclei ionized "plasma" of charged particles

www: laboratory hydrogen plasma more familiar plasma examples: flames, neon lights

Matter and Temperature: Haiku Version

As matter gets *hotter* collisions *more violent* ground to smaller bits

Cold atoms
$$\rightarrow$$
 ions= e +nuclei \rightarrow $n+p \rightarrow$ quarks \rightarrow ???

So the history of atoms in cosmos is:

- early Universe (T > 10,000 K) ionized no atoms could survive—torn apart
- but as cooled, became neutral atoms were stable, had to form
- so must have been a time of transition: key moment! the epoch of (re)combination plasma "condensation" → birth of atoms!

Procedure:

- follow physics of expanding, cooling H gas in bath of thermal radiation Q: what is $\lambda/color$?
- ullet through ionized o neutral transition
- then ask ourselves: what observable traces ("fossils") would this leave behind? ("cosmic archæology")

Q: guesses?