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MIDTERM EXAM–SOLUTIONS

1. Mystery Radio Sources

(a) A Galactic population would trace the Galactic plane, while an extragalactic
population would be unrelated to the Galactic plane. The mystery objects
overwhelmingly lie in the Galactic plane, and thus they must be a Galactic
population.

(b) The objects are observed in radio wavelengths, and the Galaxy is transparent
at these wavelenghts. Thus it is possible to see these objects throughout the
entire Galaxy, if they are bright enough. If we only could see those nearby, then
the situation would be like the optical observations of stars–we would see a
uniform band encircling the Galactic plane. But these objects are not uniform,
and instead are very much concentrated towards the inner Galaxy–just as in the
case of 21 cm from neutral hydrogen, and CO molecular observations. Hence
we conclude that (like neutral H and CO), these objects are seen throughout
the Galaxy.

(c) As shown in PS 1, the gravitational timescale for objects of density ρ is

τgrav =
1

√
Gρ

(1)

If we put P ≈ τgrav = 1/
√

Gρ, then solving for density we have

ρ =
1

GP 2
= 1.5 × 1013 g/cm3 = 1.5 × 1016 kg/m3 (2)

This enormous density, which demands that these are some sort of compact
object. Reasonable guesses would be white dwarfs, or better, neutron stars.

In fact, these objects are spinnin neutron stars–they are pulsars.



2. An Einstein Ring.

(a) Hubble’s law is v = H0d, and using v = cz, we have

d =
v

H0

=
c

H0

z = 4100 Mpc z (3)

So we have

dsource =
c

H0

zsouce = 9800 Mpc (4)

dlens =
c

H0

zsouce = 1800 Mpc (5)

(b) For a small angle such as this, we have r = dθ. There was a stupid typo in the
exam, since 5 arsec = 2 × 10−4 rad, rather than 10−4 rad, so you either got

rE(5 arsec) = dlensθE = 0.180 Mpc = 180 kpc (6)

or
rE(10−4 rad) = dlensθE = 0.044 Mpc = 44 kpc (7)

Either got full credit.

The luminous parts of a typical galaxy, such as the Milky Way, extend to a
radius of about 10 kpc. Since rE is considerably larger (for either value), we
expect this lensing mass to extend into the dark halo and thus enclose dark
matter as well as luminous matter.

(c) From lecture notes, or from the textbook, we see that

θE =

√

4GMenc

c2Deff

(8)

where

Deff =
dsourcedlens

dsource−lens

=
dsourcedlens

dsource − dlens

= 2200 Mpc (9)

Using these we can solve for the enclosed mass

Menc =
θ2
Ec2Deff

4G
= 1.4 × 1046 g = 6.8 × 1012 M⊙ (10)

or, if you used the other value of θE,

Menc = 2.3 × 1047 g = 1.2 × 1014 M⊙ (11)

The Milky Way mass out to 50 kpc, including the dark halo, is about 5 ×
1011M⊙, so this galaxy is in either case considerably more massive.
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3. A Galaxy Rotation Curve

(a) For circular orbits, we have

v2

r
=

Gmenc(r)

r2
(12)

and so we find

menc(r) =
v(r)2 r

G
(13)

Applying this to the rotation curve at hand, we havve

menc(r) =







v2

0
r2/r0

G r ≤ r0 (inner galaxy)
v2

0
r

G r > r0 (outer galaxy)
(14)

We see that for r → 0, that menc ∝ r2 → 0; the enclosed mass goes to zero at
the origin, as it should. At large distances r → ∞, we have menc(r) ∝ r → ∞;
this is the usual flat-rotation-curve result that the mass keeps increasing at
large distances even though we don’t see any luminous matter.

(b) Since there is no luminous matter beyond rmax, but we find that menc(r) keeps
increasing beyond rmax, we conclude that there must be large amounts of non-
luminous matter present. This is dark matter.

(c) We are still looking at circular motion, so we still want gravity to provide the
centripetal acceleration, but now we will allow g to be non-newtonian. Thus
we have

acentripetal =
v2

r
= gmod(r) (15)

and on the flat part of the rotation curve, v(r) = v0 = a constant, so we have

gmod(r) =
v2
0

r
∝

1

r
(16)

and thus if we write g(r) ∝ 1/rβ , we find that β = 1.
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