
Astronomy 406, Fall 2013
Problem Set #1

Due in class: Friday, Sept. 6 Total Points: 60 + 5 bonus

Note: Your homework solutions should be legible and include all calculations, diagrams,
and explanations. The TA is not responsible for deciphering unreadable or illegible problem
sets! Also, homework is graded on the method of solution, not just the final answer; you may
not get any credit if you just state the final answer!

You may discuss with other students, but you are responsible for your own answers: you
must understand your solutions, and you must write them yourself in your own words.

1. Keplerian Motion Post-Summer Warmup. Consider a particle m moving in the gravity
field set up by much larger spherical mass M . The Newtonian gravitational force on
m has magnitude F = GMm/r2. The particle moves in a circular orbit at constant
distance r = a.

(a) [4 points] Find the circular speed vc. Recall that the centripetal acceleration ac =
v2
c
/r and is provided by the gravitational acceleration.

(b) [4 points] Let P be the orbital period. Show that the orbit obeys Kepler’s third
law, a3 ∝ P 2, and find an expression for the constant of proportionality. Go on to
solve for P .

(c) [4 points] Show that the orbit always obeys the relationship 2T = −U , where
T = 1/2 mv2 is particle the kinetic energy, and U = −GMm/r is the potential
energy. Then show how the total energy Etot is related to U . (We will soon see
that these are special cases of a general result known as the Virial theorem.)

2. Gravitational Timescales from Dimensional Analysis. Throughout this course we will
often consider systems in which gravity is the only or the dominant driver of the system’s
motion. In such cases, it is useful to calculate or at least estimate the characteristic
timescale for the system to evolve given its present state (mass distribution). It turns
out that just from dimensional analysis one can arrive at a very useful “back-of-the-
envelope” estimate for the gravitational timescale. This problem is wordy but not very
difficult, and will be useful throughout the course.

(a) [4 points] Consider a system with a mass m and a characteristic lengthscale ℓ.
Find the physical dimensions (i.e., factors of length, time, and mass) in Newton’s
gravitational constant G. Using these, show that you can construct an algebraic
combination of G, m, and ℓ which has the dimensions of time. Call this expression
τgrav, the gravitational timescale. Go on to show that this combination can be very
compactly expressed in terms of the system’s characteristic mass density ρ ∼ m/ℓ3.
Note that for a dimensional analysis like this we include only terms with physical
dimensions and not dimensionless numerical prefactors (like 2, or π, etc).

Briefly comment on the uniqueness of your expression–what are other combination
(if any) of the factors of G, m, and ℓ that also give a timescale?

(b) [4 points] For the circular-motion Kepler problem you solved in Question 1 above,
identify the appropriate mass and length scales m and ℓ. Using these, use your



expression from part (a) to compute τgrav. What timescale does this physically
correspond to? How accurate is your estimate compared to the full result from
Problem 1? For the Kepler problem, what is the physical interpretation of the
characteristic density scale ρ?

(c) [5 points] Now consider a spherical matter distribution of radius R and (constant)
density ρ. Assume this object had no other forces, i.e., suppose gas pressure and/or
solid-state interactions were insignificant or “turned off.” Then in the absence of
opposing forces, the object will collapse under its own gravity. Find τgrav for this
system. To see that this is a reasonable result, make a different estimate for the
collapse timescale by asking how long it would take a particle at the surface of
the sphere to fall to the center, assuming it always is accelerated by a constant
gravitational acceleration g, which you may take to be the pre-collapse acceleration
at R. How does your result compare with τgrav?

Finally, evaluate the gravitational timescale for the Earth (mean density ρEarth ≈

5.5 g cm−3), the Sun (mean density ρ⊙ ≈ 1.4 g cm−3), and a neutron star (mean
density ρ⊙ ≈ 1015 g cm−3). Comment on your results. If you find that the timescale
is shorter than the known ages of these objects (billions of years), explain the
discrepancy.

(d) [5 bonus points] Now consider a sphere of non-uniform density, also undergoing
gravitational collapse. If, as in most stars, the density decreases with radius, from
a maximum at the center to a minimum at the surface, how would you expect the
collapse to proceed? Don’t do any calculation here, but use the form of τgrav to
guide your reasoning. Also, what if the density were to increase with radius from a
minimum at the center to a maximum at the surface?

(e) [4 points] Now consider the Universe itself. We will see that the cosmic mass
density today is about ρ0 = 3×10−30 g cm−3. Evaluate the associated gravitational
timescale. Express your answer in seconds and in billions of years (109 yr = 1 Gyr).
What might be the physical significance of this timescale?

3. Flux and the inverse square law [5 points] The Sun’s flux as seen at Earth is F⊙ =
1360 Watt/m2; this is sometimes called the “solar constant.” Calculate how far away
you need to place a 100 Watt lightbub for it to have the same flux as the Sun’s. Does
this result seem reasonable?

The star with the next largest flux after the Sun is Sirius (the “dog star”), which has, at
visible wavelengths, about FSirius = 7.7× 10−11 F⊙. Calculate how far away you need to
place a 100 Watt lightbub for it to have the same flux as Sirius. Does this result seem
reasonable?

4. How far can the eye see?

(a) [4 points] The magnitude scale is the traditional and somewhat confusing way as-
tronomers measure brightness or flux. The rule is that the apparent magnitude m
of a star is related to its flux F by

m = −2.5 log

(

F

Fzp

)

(1)

2



where the factor of 2.5 is arbitrary, and the sign is a huge source of confusion, as it
means that brighter stars have smaller magnitudes. Sorry. Fzp is a fixed (arbitrary)
reference flux.

Show that when F = Fzp, then m = 0. This is why the reference flux is also known
as the “zero point” of the magnitude scale.

Magnitudes can be defined for different bands of wavelengths (see Sparke and Gal-
lagher Chapter 1.1, especially 1.1.5), with different zero points for different color
bands. What choice is conventionally made to set the m = 0 zero point?

(b) [4 points] Show that the difference in magnitudes of two stars is given by

m2 −m1 = 2.5 log
F1

F2

(2)

which does not depend on the zero point flux.

(c) [5 points] While the apparent magnitude m of a star measures its flux, the absolute

magnitude M measures its luminosity. This is done by defining M to be the ap-
parent magnitude the star would have if it were at a distance d0 = 10 pc (parsecs).
If the true distance to the star is d, show that M = m− 5 log(d/d0).

We know the Sun’s luminosity very accurately, so this forms a useful astronomical
luminosity scale, similar to the way the Sun’s mass is a useful unit of astronomical
mass. Derive an expression for the ratio of a star’s luminosity L to the Sun’s, i.e.,
L/L⊙, in terms of star’s absolute magnitude M and the Sun’s, M⊙.

(d) [5 points] The limiting minimum brightness your eye can see (in the visible waveband
V ) is about mlim = 6 mag; this means that the eye can see fluxes having m < mlim.
If a star has absolute magnitude M , give an expression for the distance dlim (in
parsecs) at which its apparent magnitude is mlim.

(e) [4 points] Then use Table 1.4 to find dlim for the Sun, an A0 dwarf, and an M6
dwarf; use Table 1.5 to do the same for an M0 red giant, and use Table 1.6 to do
the same for an A0 supergiant.

Comment on the implications for our view of the night sky. What biases might we
have?

Finally, use Tables 1.4 through 1.6 to find the distance to the farthest single star
the eye can see. What kind of star is this?

(f) [4 points] The light from a galaxy is due almost entirely to the light from its stars.
A typical galaxy bright galaxy (called an L∗ galaxy) contains about 1011 stars.
Assume these typically have L = 0.2L⊙, and show that the absolute magnitude of
a bright galaxy is about M∗ = −21 mag. What is the maximum distance in Mpc
(1 Mpc = 1 megaparsec = 106 parsecs) at which an L∗ galaxy can be and still be
visible to the eye? Compare this result to the typical galaxy-to-galaxy spacing of
∼ 5 Mpc, and comment.

In fact, galaxies are not point sources but have a finite apparent angular size,
i.e., their starlight is not concentrated in a point but rather spread over a patch
of the sky. In view of this, is your point-source maximum distance estimate an
underestimate or overestimate of the result for a real galaxy?
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