
Astronomy 406, Fall 2013
Problem Set #10

Due in class: Friday, Nov. 15 Total Points: 60 + 5 bonus

1. Cosmological FAQ. The following are some frequently asked questions about cosmology
(or some questions that should be asked more frequently, because they are great sources
of confusion).

(a) [5 points] Where did the big bang happen? Explain your answer in 1–2 sentences.

(b) [5 points] Where is the center of the universe? Explain your answer in 1–2 sentences.

(c) [5 points] What does it mean for the universe to have a “flat” geometry? Isn’t space
three-dimensional?

2. The first law of thermodynamics and the cosmic equation of state

(a) [5 points] Pressure forces can do work if the volume changes. In class, we noted that
the pressure force is ~F =

∫
P d ~A, where d ~A is an infinitesimal area element, pointed

outward from (i.e., normal to) the surface, for example into a piston if there is one.
If the pressure forces cause a change dV in volume (e.g., by moving a piston), then
this does work. Given the usual definition of work W =

∫ ~F ·d~x Show that the work
done is W =

∫
P dV . Hint: this isn’t actually very hard. All you really need to

realize is that when an area element is displaced by a distance d~x, then the volume
swept out is just the area times the component of the displacement that is normal
(perpendicular) to the surface.

Then use this result to show that for an isolated system, conservation of energy
implies that the work done is entirely at the expense of internal energy U , so that
dU = −PdV . This result may be familiar to some as the First Law of Thermo-

dynamics, and in fact assumes that the expansion or contraction is adiabatic, i.e.,
there is no heat going into or out of the system.

(b) [5 bonus points] Show that the usual Friedmann equation for ȧ and the Friedmann
acceleration equation for ä together imply that the universe obeys

d(ρc2a3) = −Pd(a3) (1)

Hint: to see this, note that the usual Friedmann equation governs ȧ, while the
Friedmann acceleration equation governs ä. Take the time derivative of the usual
Friedmann equation–in particular, find d(ȧ2)/dt. The result will contain a term
with ä; then use the Friedmann acceleration equation to show that eq. (1) holds.
Finally, interpret eq. (1) physically in light of your result from part (a).

(c) [5 points] In general, the pressure P depends on ρ; the P (ρ) relationship is known
as the equation of state. As mentioned in class, the different components of the
universe often obey P = wρc2, where w is a dimensionless constant. Show that in
this case, eq. (1) gives ρ ∝ a−3(1+w).

(d) [5 points] Note that for radiation, one can show that Prad = 1/3 ρradc
2. Use this

result and the previous one to show that this gives ρ ∝ a−4, which we had already
derived by other means.



(e) [5 points] Show, on the other hand, that our result for the matter density ρm ∝ a−3

demands that w = 0 and thus P = 0. This might seem odd: we know that normal
matter does have pressure P = nkT if it is at nonzero temperature. However, go
on to show that P ≪ ρc2 as long as kT ≪ mc2, which is exactly the condition that
defines non-relativistic matter, and thus guarantees that we don’t cheat much when
we put P ≈ 0.

(f) [5 points] Show that the two Friedmann equations with a cosmological constant
can be rewritten as the ordinary Friedmann equations if we define a vacuum energy

density ρΛ = Λc2/8πG and an associated vacuum pressure PΛ = −ρΛc
2. Use this

vacuum energy equation of state with eq. (1) to show that ρΛ ∝ a0 = const.

(g) [5 points] Fits to the data from Type Ia supernovae have been done, assuming that
the Universe contains both nonrelativistic matter, and another component (dark
energy) characterized by some value of w. Analyzed this way, the data demand
that the universe contains a large component of dark energy, which must have
w < −0.7. Show that a universe that is accelerating (i.e., that has ä > 0) requires
that w < −1/3. Thus you will show that the supernova data demand that the
universe is accelerating.

3. Particle horizons. Consider two observers (e.g., two galaxies A and B) separated by
a fixed, comoving distance rAB (which we can set to be their distance today). The
true physical distance between the galaxies of course changes with time due to cosmic
expansion; for each small comoving distance increment dr, the corresponding increment
in physical distance is just given by dℓphys = a(t)dr. Using this expression, we see that
the entire physical distance is simply

ℓphys(t) =

∫
rB

rA

dℓphys = a(t)

∫
rB

rA

dr = a(t)rAB (2)

as we already saw some time ago.

rAB

dr

BA

(a) [5 points] Now consider a light ray which moves from galaxy A to galaxy B. Its
speed relative to the observers it passes is v = dℓphys/dt = a(t)dr/dt = c. Using
this, show that a light ray emitted at time t = 0, and detected at time t, travels a
physical distance

ℓhor(t) = c a(t)

∫
t

0

dτ

a(τ)
(3)

This distance is known, for reasons you will soon clarify, as the particle horizon.

(b) [5 points] Compute the particle horizon size for both a matter dominated and a
radiation dominated universe, using the known forms of a(t) for each. You should
find in both cases that ℓhor ∝ ct; find the constant of proportionality in both cases.
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(c) [5 points] Explain why a particle moving (with respect to the observers is passes)
at speed v < c will travel a physical distance ℓ(t) < ℓhor(t). But Special Relativity
also demands that the speed of any passing particle is limited to v < c. Combine
these facts to argue that ℓhor(t) is the maximum distance, at any time t, which
any particles can have traveled, and thus the maximum distance at which any
information and/or signals can have moved, over the history of universe. In doing
so, explain why the name “particle horizon” is appropriate for ℓhor.
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