
Astronomy 406, Fall 2013
Problem Set #2

Due in class: Friday, Sept. 13; Total Points: 60 + 5 bonus

1. The Singular Isothermal Sphere. The condition of hydrostatic equilibrium is an impor-
tant one in all of astrophysics; in class we mentioned it in the context of stars, but it is
more generally applicable.

(a) [5 points] Hydrostatic equilibrium involves pressure forces. In general, these are
related to the mass density (ρ = dM/dV ) and temperature T of the gas. In partic-
ular, systems are often well-approximated as ideal gasses. Then we have the relation
PV = NkT , the ideal gas equation of state. Here P is the pressure, V is the vol-
ume, N is the number of particles, and k = 1.38 × 10−23 Joule/K is Boltzmann’s
constant.

Given the average mass µ of a gas particle, write the ideal gas equation of state in
terms of P , µ, ρ, and T . This form will be useful below and throughout the course.

(b) [5 points] In class, we showed that a blob of gas in hydrostatic equilibrium has no
net force on it: −mblobg(r)− [P (r + h)− P (r)]A = 0, where the blob has height h
and area A, and lies at radius R.

Express this result in terms of the blob density ρ(r), and show that as we let the
blob height h become small, we have

−

dP

dr
= ρg (1)

which is the equation of hydrostatic equilibrium. Show also that for a spherically
symmetric distribution of matter, g(r) = Gm(r)/r2, where m(r) = 4π

∫ r
0 R2ρ(R)dR

is the mass enclosed inside radius r.

(c) [5 points] Now combine the results from parts (a) and (b). If an ideal gas is in hydro-
static equilibrium, held at the same constant temperature T throughout (“isother-
mal”), then show that it obeys

−

r

ρ

dρ

dr
= −

d ln ρ

d ln r
=

Gµm(r)

kTr
(2)

(d) [5 points] The trick now is to solve eq. (2), i.e., to find ρ(r) and thus m(r) and hence
the structure of gas in the star (or “gas” of stars in a galaxy). This is in general not
trivial, but we can take the optimistic approach and try a simple solution. Consider
a power-law density structure: ρ(r) = Cr−b, where C and b are constants. Show
that this form can satisfy eq. (2), but only if b and C take particular values. Find
these values. Hint: when you use the power law ρ(r) and the accompanying m(r) in
eq. (2), you will find a relationship which depends on r. Recall that this relationship
must hold for any value of r–this will force a choice of b and then C.

(e) [5 points] Using your results from (d), find m(r). Use this compute the speed vc(r)
of a test particle in a circular orbit at radius r. Hint: recall your answer to question
1 of Problem Set 1. How does vc(r) depend on r?



(f) [5 points] Comment on the behavior of ρ(r) and M(r) as r → 0 and r → ∞. What
does this imply for our solution? If all has gone well, you will see why this is known
as the singular isothermal sphere.

2. Trigonometric Parallax Redux. The usual discussion of trigonometric parallax places the
star whose distance we measure in the same plane as the Earth’s orbit around the Sun
(i.e., the ecliptic plane). But of course this is generally not the case.

(a) [5 points] First, consider a nearby star that does lie in the ecliptic plane (declination
δ = 0), as usually shown in the diagram. Over the course of a year, how will the star
move with respect to the celestial sphere (i.e., with respect to very distant objects
that show no parallax). What will the path look like on the sky? If we know the
star’s right ascension α, when should the parallax observations be taken?

(b) [5 points] Now consider a star that lies at the north celestial pole (declination δ =
+90◦ = 90◦ N). Over the course of a year, how will the star move with respect to the
celestial sphere–what will the path look like on the sky? Explain how measurements
of the star’s path can provide the parallax angle p and thus the stellar distance.
Hint: a sketch will be very useful here.

(c) [5 bonus points] For the trifecta, now consider a star with intermediate declination
0◦ < δ < +90◦. What is the annual path of such a star on the celestial sphere?
Explain how measurements of the star’s path can provide the parallax angle p and
thus the stellar distance. Hint: a sketch will be extremely useful here.

3. Collision Technology and the Interstellar Obscuration. The scattering of photons and
other particles as they propagate through a medium is a situation we will frequently
encounter, and so it will be very useful to develop some technology to understand this.

Consider a particle (the “projectile”) which we will denote a, which travels through a
medium filled with particles of type b (the “targets”). Then number density, i.e., number
of particles per unit volume, of particle b is nb. We wish to understand the chances of
collisions of a+b; this problem is very similar to that throwing darts at a dartboard, with
the targets as bullseyes. Let σ the bullseye “size”–really, the cross-sectional area–that
the targets present. Finally, the speed of the projectiles ia v.

(a) [5 points] We wish to find the probability P that a projectile will hit a target. To
do this, imagine that a box or slab of area A and thickness ∆x, filled with targets
of number density nb. This is the dartboard. Consider a single particle of type a,
fired into the box in the x-direction, but in a random location in y and z. This
corresponds to a single “dart.”

First, find the number Nb of targets–and thus bullseyes–in the box (not a hard
problem!). Assume that the target particles don’t overlap with each other, and
explain why the probability of a “hit” by the “dart” a is P = Nbσ/A, which in turn
means that

Pcollision = nb σ ∆x (3)

Go on to explain why the formula makes sense: if the target density is increased
but ∆x held fixed, what happens? If nb is fixed but ∆x decreased, what happens?
Also, if nb and ∆x are held fixed, what happens if we change the dartboard size A?
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(b) [5 points] For a fixed target density nb, find how thick we should make our slab to
make Pcollision = 1? This length is known as the mean free path λmfp; explain why
this name is appropriate. What do you expect happens if ∆x > λmfp?

(c) [5 points] If the projectiles move with speed v, find how long it takes them to move
a distance λmfp? This is known as the mean free time τ . Explain why the name is
appropriate.

(d) [5 points] Now we are in a position to understand a bit more about dust obscuration
in our Galaxy (and the Earth!). In the interstellar medium, the hydrogen gas
number density varies widely, but on average is about nH,avg ∼ 1 atom cm−3.
For about every 1012 H atoms, there is one dust particle, of average size about
r ≃ 0.3 µm = 3 × 10−5 cm. Find ndust, and find σ using the geometric size of the
dust. Use these to find λmfp for photons in the interstellar medium. Compare with
the size of our Galaxy and the distance to its center, and comment.

Finally, the atmosphere on Earth’s surface is about 1020 (!) times denser than the
average interstellar medium. If our atmosphere contained the same proportion of
dust as is found in interstellar space (that is, the same ratio of dust particles to gas
atoms), find λmfp. Comment on the result.
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