
Astronomy 406, Fall 2013 Problem Set #4

Due in class: Friday, Sept. 27 ; Total Points: 60 + 5 bonus

1. Our Radioactive Galaxy and the Galactic Supernova Rate. Supernova explosions produce many heavy elements, including an unstable form (isotope) of aluminum, known as aluminum-26. ²⁶Al is radioactive but long-lived, a mean life τ (²⁶Al) = 1 Myr. Its decay produces a monoenergetic gamma ray of energy $\epsilon_{\gamma} = 1.809$ MeV. Below is an all-sky map at 1.809 MeV, as seen by the COMPTEL instrument on NASA's Compton Gamma-Ray Observatory space mission (Plüschke et al 2001; arXiv:astro-ph/0104047).

- (a) [5 points] Explain why the sky distribution of the 1.809 MeV signal suggests that our Galaxy is transparent to these photons.
 Hint: if the opposite were true, and gamma rays were absorbed in interstellar space with some mean free path, then what would you expect the gamma-ray sky distribution to look like?
- (b) [5 points] The COMPTEL map gives the γ -ray intensity or surface brightness I, i.e., the *number* of photons per unit area per unit time and per unit *angular area* on the sky; this angular area is given in steradians \equiv sr = radian². To find the total γ -ray number flux F, very roughly *estimate* the integral $F = \int I \, d\Omega$ of the surface brightness over angular area. Express your results in photons cm⁻² s⁻¹. Be careful with angular units! Also note that the intensity scale is given in units of 10^{-3} photons cm⁻² s⁻¹ sr⁻¹.
- (c) [5 points] Although the total ²⁶Al flux F comes from all across the Galactic disk, assume for simplicity it is all produced at the Galactic center, with a distance $d = R_0 \simeq 8.5$ kpc. Using this, estimate the ²⁶Al gamma-ray luminosity $L = \dot{N}$, i.e., the number of decay photons per unit time. Express your answer in photons/sec.

- (d) [5 points] The radioactive decay law says that $\dot{\mathcal{N}} = \mathcal{N}/\tau$, where τ is the mean life given above.
 - i. Use this relation to find the number $\mathcal N$ of ²⁶Al atoms in the Galaxy today.
 - ii. Then find the mass M of ²⁶Al in the Galaxy today, using the fact that one ²⁶Al atom has mass $m \approx 26m_p$ (with m_p the proton mass). Express your answer in solar masses M_{\odot} .
 - iii. Compare your result to the total mass of gas in the Galaxy today, and comment on how radioactive the Galaxy is.
- (e) [5 points] Supernova explosions produce ²⁶Al, each explosion typically ejecting a mass of $M_{\rm ej} \sim 3 \times 10^{-5} M_{\odot}$ into the interstellar medium.
 - i. Show that if the total rate of supernova explosions in the Galaxy (i.e., number of supernovae per unit time) is \mathcal{R}_{SN} , then the total rate at which ²⁶Al mass is produced is $M_{\rm ei}\mathcal{R}_{SN}$.
 - ii. Go on to show that if the ²⁶Al decay rate balances the ²⁶Al supernova production rate, then $M_{\rm ej}\mathcal{R}_{\rm SN} = m\dot{\mathcal{N}}$, where $m \approx 26m_p$ is the mass of one ²⁶Al atom.
- (f) [5 points] Use your value for \dot{N} you can now find a value for the Galactic supernova rate \mathcal{R}_{SN} .
 - i. Calculate \mathcal{R}_{SN} , and express your answer in events/year.
 - ii. Use this result to calculate the amount of time $\tau_{\rm SN}$ between supernova explosions anywhere in the Galaxy.
 - iii. Based on your results, what do you think are the chances there will be a Galactic supernova in your lifetime? Why?
- (g) [5 points] The most recent observed Galactic supernova exploded about $\tau_{\rm SN,obs} = 400$ years ago. You should find $\tau_{\rm SN,obs} \gg \tau_{\rm SN}$, i.e., the observed interval is significantly longer than your answer from the previous question. Explain this discrepancy (Hint: until the last few decades, only observations in the optical were available.)
- (h) [5 bonus points] Imagine a supernova exploded today on the opposite side of the Galactic disk. Explain why it would not be detectable by the Hubble telescope. Then explain what observations (using present-day facilities) we could make to discover this supernova.
- 2. The Distribution of Gas in the Galaxy: 21 cm Data. In class we derived an expression for line-of-sight velocity $v_{los} = v_r$ and compared this with 21 cm data. This comparison can be pushed further by modeling the Galaxy as a single ring of material at radius R(not necessarily equal to our radius R_0), with angular velocity $\Omega(R)$ and circular speed $V(R) = \Omega(R)R$. Then the real Galaxy can be thought of as a sequence of these rings. (See also SG problem 2.15 and hints at the back of the book).
 - (a) [5 points] Consider a ring interior to us (i.e., with $R < R_0$).
 - i. Explain why v_{los} is maximum at the point at which the ring is tangent to our line of sight. A diagram may help here.
 - ii. Also show that the latitudes of the two tangent points are $\ell_t = \pm \arcsin(R/R_0)$.

- iii. Find v_{los} at these tangent points in terms of R and V(R).
- (b) [5 points] Again for a ring at $R < R_0$:
 - i. Give the exact expression for v_{los} for all ℓ between $\pm \ell_t$ (Hint: the class and text discussion is very relevant).
 - ii. Using this and taking $V(R) = V_0 = 220$ km/s everywhere, sketch how the 21cm (l, v) plot (as in SG Fig. 2.18) would look for such a ring at $R = R_0/2$ and $R = R_0/10$.
- (c) [5 points] Find the slope dv/dℓ at ℓ = 0 for your result in part (b).
 If Ω(R) is decreasing, what do you learn if the observed slope is steep? shallow? Make sure your plots from (b) reflect this slope.
- (d) [5 points] Now consider a ring exterior to us, $R > R_0$.
 - i. Find v_{los} as a function of ℓ for this case.
 - ii. Also find $dv/d\ell$ at $\ell = 0$.
 - iii. Sketch the (ℓ, v) plot for this case at $R = 1.5R_0$ and $R = 2R_0$.
- (e) [5 points] Now look at the 21 cm (ℓ, v) map in SG Figure 2.20 and explain where the gas lies that corresponds to: $(\ell \sim 50^{\circ}, V > 0)$; $(\ell \sim 50^{\circ}, V < 0)$; $(\ell \sim 120^{\circ}, V < 0)$; $(\ell \sim 120^{\circ}, V < 0)$; $(\ell \sim -60^{\circ}, V > 0)$.