
Astronomy 406, Fall 2013
Problem Set #9

Due in class: Friday, Nov. 8 Total Points: 60 + 5 bonus

1. The Care and Feeding of Supermassive Black Holes. The most distant known QSO has
a redshift of z = 7.085, and a luminosity L = 6.3 × 1013L⊙ (!). Here we investigate the
growth history of this amazing object, known as ULASJ1120+0641. For the purposes of
this problem, we will assume this object has a black hole in its nucleus, which is accreting
matter and radiating isotropically.

(a) [5 bonus points] Recall that photons of energy E have momentum given by cp =
E. Using this, show that the rate of radiation momentum flow at radius r is
dPrad/dtdA = F/c = L/4πcr2.

Then consider ionized hydrogen gas at a distance r from the black hole. The radi-
ation scatters off both the protons and the electrons, but the scattering off protons
is negligible. The photon scattering on electrons is called Thomson scattering, and
acts as if the photons “see” the electrons with an area σT = 6.6×10−25 cm2, known
as the Thomson cross section. Using this, and the radiation pressure, find the
radiation force on an electron. Comment on how this force depends on distance.

Show that the radiation force on the electron and proton exactly balances the
gravitational force when the luminosity is

LEdd ≈
4πGMmpc

σT

(1)

where we sued the fact that mp ≫ me and thus mp + me ≈ mp. This is known as
the Eddington limit to luminosity.

Finally, explain why this is the maximum luminosity a mass M can have, by con-
sidering what would happen if L > LEdd.

(b) [5 points] Assume that ULASJ1120+0641 radiates at the Eddington limit given by
eq. (1).

i. Calculate the mass of the black hole, expressing your answer in units of M⊙.

ii. Compare your result with the mass of Sgr A∗, and comment.

(c) [5 points] When matter of mass macc is accreted onto a black hole, the maximum
energy that can be radiated is E = εmaccc

2, where the “efficiency” ε ≈ 0.1. Show
that the luminosity is thus related to the accretion rate by L = εṀc2. Here Ṁ is
the accretion rate, i.e., the rate at which mass falls on the the black hole.

(d) [5 points] Use the results from parts (b) and (c) to show that an accreting black
hole grows with time according to

Ṁ =
M

τacc

(2)

with τacc = εσTc/4πGmp = 5 × 107 years.

(e) [5 points] Finally, suppose that ULASJ1120+0641 has grown by accretion for the
entire age of the universe until z = 7.085; this corresponds to about tobs = 8 × 108

yr = 800 million years.



i. Solve eq. (2) for M(t). and find the initial mass of the black hole.

ii. Is its possible to grow a black hole of the observed mass starting from a stellar
mass black hole of M ∼ 10−100M⊙ created in a very early supernova explosion?

2. A Static Universe. As mentioned in class, Einstein initially invented a new constant of
nature, the cosmological constant Λ, which amends the usual rules of gravitation (that
is, General Relativity) so that now the Friedmann equations read
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His original goal in doing this was to keep the universe static and non-expanding.

(a) [5 points] In this picture, the density ρ0 of the universe is now constant in space
and time. Also you may assume P = 0.

i. Find the critical value Λc of the cosmological constant which makes the universe
static, so that ȧ = ä = 0. This solution is called the Einstein static universe.

ii. Also show that in this model, we must have k = +1, and give an expression for
the curvature radius R0.

(b) [5 points] Consider an Einstein static universe in which the density is now perturbed,
so that ρ(~r) fluctuates from point to point in space around its average value ρ0.
Discuss (but don’t calculate) what would happen to a region in which ρ(~r) > ρ0

and one in which ρ(~r) < ρ0. Comment on the implications for the Einstein static
universe.

3. [5 points] Escape Speed and Ω. Using the Newtonian picture we developed in class,
find the escape speed vesc for an arbitrary cosmological comoving sphere which always
encloses mass M . Express your result in terms of the sphere’s density ρ(t) and radius
R(t). Then use Hubble’s law to find the speed v with which the sphere expands. Finally,
show that the condition v ≥ vesc is equivalent to Ω ≤ 1, and v < vesc gives Ω > 1.
Interpret your result physically.

4. The Friedmann Equation: Limiting Cases. In class, we studied a matter-dominated

universe, and explicitly solved for some properties of this universe. Here we will extend
this treatment to also include a radiation-dominated universe, in which ρ = ρrad, and a
curvature-dominated universe in which c2/R2

0a
2 ≫ 8πGρ/3.

(a) [5 points] Show that in a radiation-dominated universe, a(t) = (t/t0)
1/2, and in a

curvature-dominated universe (with k = −1) that a(t) = t/t0.

(b) [5 points] Find H(t) and z(t) for a radiation-dominated universe and for a curvature-
dominated universe. For each case, what is the age of the universe at z = 1,
expressed in terms of t0? What is the redshift at which the universe is 10% of its
present age?
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(c) [5 points] Using the a(t) solutions above, find ρ(t) the case of a radiation-dominated
and then in the case of a matter-dominated universe. In both cases, express your
answer only in terms of t and physical constants like G (but not including H0 and
ρ0). Also show the relationship between ρ0 and t0 for each case. Hint: consider the
Friedmann equation as an expression for ρ.

5. The Age of the Universe.

(a) [5 points] Show that for each of the cases of a matter-dominated, radiation-dominated,
and curvature-dominated universe, the present age t0 of the universe is related to
the present value H0 of the Hubble parameter by t0 = β/H0, where β is a constant
which depends on which type of universe we are considering. Find the value of β
for each case. Your calculations give the expansion age of the Universe.

(b) [5 points] One of the best current methods of directly measuring the age of the
universe comes from the ages of globular clusters. In class, we saw that analysis of
globular clusters gives the limit t0 > 10.4 Gyr. Using this and current estimates of
the Hubble constant, place a limit on the observed value of β. Compare this to the
models considered in part (a), and comment on your result.
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