Astro 406 Lecture 10 Sept. 18, 2013

Announcements:

 \vdash

• PS 3 available, due Friday

uses real online data: need internet connection typo: 1(c) should refer to result from 1(b)

- Office hours: today 1–2pm or by appt TA: tomorrow 1–2pm
- ASTR 401: outline due Monday
- Research opportunity: Prof. Ryan Foley rfoley@cfa.harvard.edu studies exploding stars and dark energy

Last time: mapping Milky Way on 2-D sky and in 3-D space *Q: stellar populations–what? where?*

Today: the dynamical Milky Way: gravity

Local stars: the Solar Neighborhood

Want to determine: what is the number density of stars? what is distribution of masses, luminosities?

Project: survey a region of sky

- measure spectrum, distance to each star
- determine luminosity, mass

In the real world:

any telescope has finite collecting area and finite sensitivity in photodetectors

 $_{
m N}$ \rightarrow only detects stars with brightness above *flux limit* $F_{\rm min}$

iClicker Survey: Bias in Flux-Limited Surveys

consider a flux-limited survey of stars having a wide range of luminosities

survey finds *more* high-L than low-L stars From this information alone, what can we conclude?

- A high-L stars have a higher density = are more common
- B high-L stars can be seen at a much greater distance but are actually *less* common than low-L stars
- С
- stars of all L are equally common
- ω
- not enough information given

Flux-Limited Surveys

stars of luminosity L can be seen in a survey of flux limit F_{min} out to distances $d \leq d_{\max} = \sqrt{L/4\pi F_{\min}}$

Observed star counts at different Lreflect both star densities but also large differences in d_{max}

4

- high L
- medium L
- low L

"Malmquist bias" – different observable volumes $V_{obs}(M)$ for different L (or abs mag M) Q: how to correct for this bias?

$$n_{\mathsf{bin}} = \Phi(M) \ \Delta M \equiv \frac{N(M, \Delta M)}{V_{\mathsf{obs}}(M)} \tag{1}$$

defines **luminosity function** $\Phi(M)$ "bar graph" (= distribution) of star counts at each absolute magnitude M (i.e., luminosity)

σ

iClicker Poll: Star Demographics

Luminosity function: star number density at each LWhat will it look like?

- A peaked at *low L*: most stars low mass & wattage
- **B** peaked at high L: most stars high mass & wattage
- **C** peaked at *middle L*: most stars medium mass & wattage

none of the above

www: luminosity function
Q: where is it peaked? what does this mean?
Q: possible worries about remaining bias?

The Disk Star Luminosity Function

observed luminosity function for Galactic disk stars:

star *number* vs L

- highly peaked at *low L* and thus *low mass* also low temperature: main sequence M, L, T dwarfs
- low mass stars are, by far, the most abundant

star *mass* vs L

- broad peak spanning low/intermediate L, mass
- wide range of stars contribute to Galaxy's star mass

star *luminosity* vs L

- strongly peaked at high L, high mass
 - most massive, luminous stars dominate Galaxy's light output

Star Properties: Local Solar Neighborhood

Sum over all star luminosities to get totals

- number density $n_{tot} \approx 0.055$ stars pc⁻³
- luminosity density $\mathcal{L}_{tot} \approx 0.038 \ L_{\odot} \ \mathrm{pc^{-3}}$, $\sim 75\%$ from MS stars
- mass density $\rho_{\rm tot} \approx 0.025 \ M_{\odot} \ {\rm pc}^{-3}$

Average properties: mean star luminosity $L_{\rm avg} = \mathcal{L}_{\rm tot}/n_{\rm tot} = 0.7 L_{\odot}$ mean star mass $m_{\rm avg} = 0.45 M_{\odot}$

Star Properties: Milky Way

extrapolate to entire Galaxy:

- total gas mass $M_{\rm gas} \sim 10^{10} M_{\odot}$
- total stellar mass $M_{\star} \sim 10^{11} M_{\odot}$ and to the number of Milky Way stars is roughly $\mathcal{N}_{\star} = M_{\star}/m_{\rm avg} \sim 2 \times 10^{11} \simeq 200$ billion stars

thus: today, $M_{\star} \gg M_{\text{gas}}$ Q: implications of $M_{\star} \gg M_{\text{gas}}$?

But all this mass gravitates!

Q: consequences individual stars, parcels of gas?

Q: consequences for global distribution of stars, gas?

9

The Dynamical Galaxy

stars, gas have mass → gravity
everything pulls on everything else
→ individual stars and gas parcels
feel net gravity of rest of Galaxy
→ in general, this is not zero!

but nonzero gravity \rightarrow force \rightarrow acceleration \rightarrow motion!

In general: everything in Galaxy moves and has always moved! → present (and past) Galactic structure both causes and responds to orbits

 $\stackrel{6}{\rightarrow}$ to understand this interplay \rightarrow need gravitation technology

Newtonian Gravitation

Strategy:

- we know: gravity of point mass
- we want: generalize to gravity from mass distribution

Q: what is gravity of point mass?

Q: how describe (quantify) a mass distribution in space?

To generalize:

- *Q*: what if two point masses?
- *Q*: what if two *N* point masses?
- *Q*: what if continuous mass distribution?

11

Gravity of a Point Mass

consider point mass M at separation \vec{r} grav. force on "test mass" m:

$$\vec{F}_m = -\frac{GMm}{r^2}\hat{r} \tag{2}$$

inverse square *Q*: why minus sign? $\hat{r} = \vec{r}/r$: unit vector along \vec{r}

equation of motion for m:

$$m\vec{a} = m\frac{d\vec{v}}{dt} = m\frac{d^2\vec{r}}{dt^2} \equiv m\ddot{\vec{r}} = \vec{F}_m$$
$$\ddot{\vec{r}} = -\frac{GM}{r^2}\hat{r} = -\frac{GM\vec{r}}{r^3}$$

acceleration independent of m

Q: physically, what does this mean?
 "equivalence principle"

Newtonian Gravitational Field

for point mass M:

- acceleration independent of test mass
- \bullet thus only depends on "source" ${\cal M}$

formally: can write test mass force $\vec{F}_m = m\vec{g}$ and thus in the presence of a gravity source M

i.e., given the existence and amount mass any and all test particles at point \vec{r} feel acceleration

$$\vec{a} = \vec{g}(\vec{r}) \tag{3}$$

⇒ physical interpretation: each mass M sets up its own gravitational field \vec{g} throughout space

13

Gravity from many sources: Superposition

Thus far: only considered single point masses what if we add more gravity sources—i.e., more masses?

If 1 point particle m_1 at $\vec{r_1}$ gravity is

$$\vec{g}_1 = -\frac{Gm_1}{r_1^2} \hat{r}_1 = -\frac{Gm_1 \vec{r}_1}{r_1^3} \tag{4}$$

For 2 point particles m_1, m_2 at r_1, r_2 gravity is **superposition** of vectors

$$\vec{g} = \vec{g}_1 + \vec{g}_2 = -G\left[\frac{m_1 \vec{r_1}}{r_1^3} + \frac{m_2 \vec{r_2}}{r_2^3}\right]$$
(5)

14

Q: what's *g* like between particles? at large distances?

multiple point particles $m_1, ..., m_N$, $\vec{r_1}, ..., \vec{r_N}$: \vec{g} from superposition:

$$\vec{g} = \sum_{i=1}^{N} \vec{g}_i$$

$$= -G \sum \frac{m_i \vec{r}_i}{r_i^3}$$
(6)
(7)

in general: complicated!

e.g., in Milky Way, sum includes 200 billion stars

for continuous mass distribution, i.e., smooth mass density: each mass element $dm = \rho \ dV$ at position \vec{r} , sum field contribution $d\vec{g} = -G \ dm \ \vec{r}/r^3$

15

$$\vec{g}(\vec{r}) = -G \int_{V} dm \frac{\vec{r}}{r^{3}} = -G \int_{V} d^{3}\vec{x} \frac{\rho(\vec{r} - \vec{x})}{|\vec{r} - \vec{x}|^{3}}$$
(8)

"highly nontrivial" ! there has to be a better way!

Gauss' Law for Gravity

how sum up? how do the integral?

You already have the technology! Notice similarity: $\begin{array}{ccc} Electrostatics & Gravity \\ \hline ``charge'' & q & m \\ \hline ``charge'' & q & m \\ force & qQ/4\pi\epsilon_0r^2 \ \hat{r} & -GmM/r^2 \ \hat{r} \\ \hline field & \vec{F}_q = q\vec{E} & \vec{F}_m = m\vec{g} \end{array}$

formally identical inverse square law forces! (except sign, and $\pm q$ allowed, $m \ge 0$)

So: can import electrostatics technology Memory lane: Gauss' Law from EM www: PHYS 212

Gauss' Law in E&M

consider a point charge Q enclose in sphere: \vec{E} normal to surface \vec{S}

$$\int_{S} \vec{E} \cdot d\vec{S} = E \int_{S} dS = \frac{Q}{4\pi\epsilon_0 r^2} 4\pi r^2 = \frac{q}{\epsilon_0}$$
(9)

miracle: holds for all \vec{E} and surfaces \vec{S}

electric flux =
$$\int_{S} \vec{E} \cdot d\vec{S} = \frac{q_{\text{enc}}}{\epsilon_0}$$
 (10)

where q_{enc} is total charge enclosed in surface S

Gauss' Law for gravity: for point mass M

$$\int_{S} \vec{g} \cdot d\vec{S} = -\frac{GM}{r^2} 4\pi r^2 = -4\pi GM$$
(11)

≒ and in general: $\int_{S} \vec{g} \cdot d\vec{S} = -4\pi G M_{\text{enc}}$

Gauss' Law Example

spherical mass distribution $\rho(r)$ rotational symmetry:

- \vec{g} direction radial: \hat{r}
- $\vec{g}(r,\theta,\phi) = \vec{g}(r)$

Gauss' Law: choose spherical surface

$$\int_{S} \vec{g} \cdot d\vec{S} = 4\pi r^2 g(r) = -4\pi G m(r)$$
 (12)

where $m(r) = 4\pi \int dr r^2 \rho(r)$

solve:

$$\vec{g} = -\frac{Gm(r)}{r^2}\hat{r} \tag{13}$$

note similarity to point-source formula but this works for *any* spherical mass distribution and works inside, outside mass distribution!

Q: field at center?

Q: field if hollow out inside and you're there?

 \Rightarrow field is same as if interior mass concentrated at center!

The Care and Feeding of Gauss' Law

Gauss for gravity:

$$\int_{S} \vec{g} \cdot d\vec{S} = -4\pi G M_{\text{enc}} \tag{14}$$

note: holds for any surface $S \rightarrow you \ get \ to \ choose \ S$

a powerful tool if good choice of surface S

- \bullet need to guarantee that $\vec{S} \| \vec{g}$
- need to pick surface where $g = |\vec{g}|$ is constant then: $\int_S \vec{g} \cdot d\vec{S} = gS$ and can easily solve for $g = -4\pi M_{\text{enc}}/S$

each bin contains some number of stars with fixed (known) mass, luminosity

to find totals, just sum over each bin

total number density of all stars is

$$n_{\text{tot}} = \sum_{\text{bin}} n_{\text{bin}} = \sum_{\text{bin}} \Phi(M) \Delta M$$
 (15)

total *luminosity density*: weight bins with luminosity

$$\mathcal{L}_{\text{tot}} = \sum_{\text{bin}} L(M) \Phi(M) \Delta M \tag{16}$$

total mass density: weight bins with mass

$$\rho_{\text{tot}} = \sum_{\text{bin}} \mathcal{M}(M) \, \Phi(M) \Delta M \tag{17}$$