> Astro 406
> Lecture 10
> Sept. 18,2013

Announcements:

- PS 3 available, due Friday
uses real online data: need internet connection typo: 1(c) should refer to result from 1 (b)
- Office hours: today 1-2pm or by appt TA: tomorrow 1-2pm
- ASTR 401: outline due Monday
- Research opportunity: Prof. Ryan Foley rfoley@cfa.harvard.edu studies exploding stars and dark energy

Last time: mapping Milky Way on 2-D sky and in 3-D space Q: stellar populations-what? where?

Today:
the dynamical Milky Way: gravity

Local stars: the Solar Neighborhood

Want to determine:
what is the number density of stars?
what is distribution of masses, luminosities?

Project: survey a region of sky

- measure spectrum, distance to each star
- determine luminosity, mass

In the real world:
any telescope has finite collecting area and finite sensitivity in photodetectors
$N \rightarrow$ only detects stars with brightness above flux limit $F_{\text {min }}$

iClicker Survey: Bias in Flux-Limited Surveys

consider a flux-limited survey
of stars having a wide range of luminosities
survey finds more high- L than low- L stars
From this information alone, what can we conclude?

A high- L stars have a higher density $=$ are more common

B high- L stars can be seen at a much greater distance but are actually less common than low- L stars

C stars of all L are equally common
ω
D not enough information given

Flux-Limited Surveys

sky view: survey region
Observed star counts at different L reflect both star densities but also large differences in $d_{\text {max }}$

"Malmquist bias" - different observable volumes $V_{\text {obs }}(M)$
for different L (or abs mag M)
Q : how to correct for this bias?

We can correct for bias:
in absolute magnitude "bin"
of range ΔM centered on M

- count stars: $N(M, \Delta M)$
- compute observable volume $V_{\text {obs }}(M)$
vol in which lum $L(M)$ gives flux $\geq F_{\text {min }}$

\longleftarrow absolute magnitude luminosity \longrightarrow
then: number density ($\equiv \#$ stars per unit volume) in "bin" $M \pm \Delta M / 2$ is

$$
\begin{equation*}
n_{\mathrm{bin}}=\Phi(M) \Delta M \equiv \frac{N(M, \Delta M)}{V_{\mathrm{obs}}(M)} \tag{1}
\end{equation*}
$$

defines luminosity function $\Phi(M)$
"bar graph" (= distribution) of star counts

iClicker Poll: Star Demographics

Luminosity function: star number density at each L What will it look like?

A peaked at low L: most stars low mass \& wattage

B peaked at high L : most stars high mass \& wattage
C peaked at middle L: most stars medium mass \& wattage

D none of the above
www: luminosity function
Q: where is it peaked? what does this mean?
Q: possible worries about remaining bias?

The Disk Star Luminosity Function

observed luminosity function for Galactic disk stars:
star number vs L

- highly peaked at Iow L and thus low mass also low temperature: main sequence M, L, T dwarfs
- low mass stars are, by far, the most abundant
star mass vs L
- broad peak spanning low/intermediate L, mass
- wide range of stars contribute to Galaxy's star mass
star luminosity vs L
v - strongly peaked at high L, high mass
- most massive, luminous stars dominate Galaxy's light output

Star Properties: Local Solar Neighborhood

Sum over all star luminosities to get totals

- number density $n_{\text {tot }} \approx 0.055$ stars pc^{-3}
- luminosity density $\mathcal{L}_{\text {tot }} \approx 0.038 L_{\odot} \mathrm{pc}^{-3}$,
~ 75\% from MS stars
- mass density $\rho_{\text {tot }} \approx 0.025 M_{\odot} \mathrm{pc}^{-3}$

Average properties:
mean star luminosity $L_{\text {avg }}=\mathcal{L}_{\text {tot }} / n_{\text {tot }}=0.7 L_{\odot}$
mean star mass mavg $=0.45 M_{\odot}$

Star Properties: Milky Way

extrapolate to entire Galaxy:

- total gas mass $M_{\text {gas }} \sim 10^{10} M_{\odot}$
- total stellar mass $M_{\star} \sim 10^{11} M_{\odot}$ and to the number of Milky Way stars is roughly $\mathcal{N}_{\star}=M_{\star} / m_{\text {avg }} \sim 2 \times 10^{11} \simeq 200$ billion stars
thus: today, $M_{\star} \gg M_{\text {gas }}$
Q: implications of $M_{\star} \gg M_{\text {gas }}$?

But all this mass gravitates!
Q: consequences individual stars, parcels of gas?
Q: consequences for global distribution of stars, gas?

The Dynamical Galaxy

stars, gas have mass \rightarrow gravity
everything pulls on everything else
\rightarrow individual stars and gas parcels
feel net gravity of rest of Galaxy
\rightarrow in general, this is not zero!
but nonzero gravity \rightarrow force \rightarrow acceleration
\rightarrow motion!

In general: everything in Galaxy moves and has always moved!
\rightarrow present (and past) Galactic structure both causes and responds to orbits
$\stackrel{\circ}{\circ}$
to understand this interplay
\rightarrow need gravitation technology

Newtonian Gravitation

Strategy:

- we know: gravity of point mass
- we want: generalize to gravity from mass distribution

Q: what is gravity of point mass?
Q: how describe (quantify) a mass distribution in space?

To generalize:
Q: what if two point masses?
Q: what if two N point masses?
Q: what if continuous mass distribution?

Gravity of a Point Mass

consider point mass M at separation \vec{r} grav. force on "test mass" m :

$$
\begin{equation*}
\vec{F}_{m}=-\frac{G M m}{r^{2}} \widehat{r} \tag{2}
\end{equation*}
$$

inverse square Q : why minus sign?
$\hat{r}=\vec{r} / r$: unit vector along \vec{r}
equation of motion for m :

$$
\begin{aligned}
m \vec{a}=m \frac{d \vec{v}}{d t}=m \frac{d^{2} \vec{r}}{d t^{2}} & \equiv m \ddot{\vec{r}}=\vec{F}_{m} \\
\ddot{\vec{r}} & =-\frac{G M}{r^{2}} \widehat{r}=-\frac{G M \vec{r}}{r^{3}}
\end{aligned}
$$

acceleration independent of m
$\stackrel{\rightharpoonup}{\sim}$ Q: physically, what does this mean?
"equivalence principle"

Newtonian Gravitational Field

for point mass M :

- acceleration independent of test mass
- thus only depends on "source" M
formally: can write test mass force $\vec{F}_{m}=m \vec{g}$ and thus in the presence of a gravity source M
i.e., given the existence and amount mass any and all test particles at point \vec{r} feel acceleration

$$
\begin{equation*}
\vec{a}=\vec{g}(\vec{r}) \tag{3}
\end{equation*}
$$

\Rightarrow physical interpretation: each mass M sets up its own gravitational field \vec{g} throughout space

Gravity from many sources: Superposition

Thus far: only considered single point masses what if we add more gravity sources-i.e., more masses?

If 1 point particle m_{1} at \vec{r}_{1} gravity is

$$
\begin{equation*}
\vec{g}_{1}=-\frac{G m_{1}}{r_{1}^{2}} \widehat{r}_{1}=-\frac{G m_{1} \vec{r}_{1}}{r_{1}^{3}} \tag{4}
\end{equation*}
$$

For 2 point particles m_{1}, m_{2} at r_{1}, r_{2} gravity is superposition of vectors

$$
\begin{equation*}
\vec{g}=\vec{g}_{1}+\vec{g}_{2}=-G\left[\frac{m_{1} \overrightarrow{r_{1}}}{r_{1}^{3}}+\frac{m_{2} \overrightarrow{r_{2}}}{r_{2}^{3}}\right] \tag{5}
\end{equation*}
$$

Q: what's g like between particles? at large distances?
multiple point particles $m_{1}, \ldots, m_{N}, \vec{r}_{1}, \ldots, \vec{r}_{N}$:
\vec{g} from superposition:

$$
\begin{align*}
\vec{g} & =\sum_{i=1}^{N} \vec{g}_{i} \tag{6}\\
& =-G \sum \frac{m_{i} \vec{r}_{i}}{r_{i}^{3}} \tag{7}
\end{align*}
$$

in general: complicated!
e.g., in Milky Way, sum includes 200 billion stars
for continuous mass distribution, i.e., smooth mass density: each mass element $d m=\rho d V$
at position \vec{r}, sum field contribution
$d \vec{g}=-G d m \vec{r} / r^{3}$

G

$$
\begin{equation*}
\vec{g}(\vec{r})=-G \int_{V} d m \frac{\vec{r}}{r^{3}}=-G \int_{V} d^{3} \vec{x} \frac{\rho(\vec{r}-\vec{x})}{|\vec{r}-\vec{x}|^{3}} \tag{8}
\end{equation*}
$$

"highly nontrivial"!
there has to be a better way!

Gauss' Law for Gravity

how sum up? how do the integral?

You already have the technology! Notice similarity:

	Electrostatics	Gravity
"charge"	q	m
force	$q Q / 4 \pi \epsilon_{0} r^{2} \widehat{r}$	$-G m M / r^{2} \widehat{r}$
field	$\vec{F}_{q}=q \vec{E}$	$\vec{F}_{m}=m \vec{g}$

formally identical inverse square law forces!
(except sign, and $\pm q$ allowed, $m \geq 0$)

So: can import electrostatics technology
Memory lane: Gauss' Law from EM
www: PHYS 212

Gauss' Law in E\&M

consider a point charge Q
enclose in sphere: \vec{E} normal to surface \vec{S}

$$
\begin{equation*}
\int_{S} \vec{E} \cdot d \vec{S}=E \int_{S} d S=\frac{Q}{4 \pi \epsilon_{0} r^{2}} 4 \pi r^{2}=\frac{q}{\epsilon_{0}} \tag{9}
\end{equation*}
$$

miracle: holds for all \vec{E} and surfaces \vec{S}

$$
\begin{equation*}
\text { electric flux }=\int_{S} \vec{E} \cdot d \vec{S}=\frac{q_{\mathrm{enc}}}{\epsilon_{0}} \tag{10}
\end{equation*}
$$

where q enc is total charge enclosed in surface S

Gauss' Law for gravity: for point mass M

$$
\begin{equation*}
\int_{S} \vec{g} \cdot d \vec{S}=-\frac{G M}{r^{2}} 4 \pi r^{2}=-4 \pi G M \tag{11}
\end{equation*}
$$

$\stackrel{\rightharpoonup}{\vee}$ and in general:

$$
\int_{S} \vec{g} \cdot d \vec{S}=-4 \pi G M_{\mathrm{enc}}
$$

Gauss' Law Example

spherical mass distribution $\rho(r)$
rotational symmetry:

- \vec{g} direction radial: \widehat{r}
- $\vec{g}(r, \theta, \phi)=\vec{g}(r)$

Gauss' Law: choose spherical surface

$$
\begin{equation*}
\int_{S} \vec{g} \cdot d \vec{S}=4 \pi r^{2} g(r)=-4 \pi G m(r) \tag{12}
\end{equation*}
$$

where $m(r)=4 \pi \int d r r^{2} \rho(r)$
solve:

$$
\begin{equation*}
\vec{g}=-\frac{G m(r)}{r^{2}} \widehat{r} \tag{13}
\end{equation*}
$$

note similarity to point-source formula but this works for any spherical mass distribution and works inside, outside mass distribution!

Q: field at center?
Q: field if hollow out inside and you're there?
\Rightarrow field is same as if interior mass concentrated at center!

The Care and Feeding of Gauss' Law

Gauss for gravity:

$$
\begin{equation*}
\int_{S} \vec{g} \cdot d \vec{S}=-4 \pi G M_{\mathrm{enc}} \tag{14}
\end{equation*}
$$

note: holds for any surface S
\rightarrow you get to choose S
a powerful tool if good choice of surface S

- need to guarantee that $\vec{S} \| \vec{g}$
- need to pick surface where $g=|\vec{g}|$ is constant then: $\int_{S} \vec{g} \cdot d \vec{S}=g S$ and can easily solve for $g=-4 \pi M_{\mathrm{enc}} / S$

N How do you make these good choices?
\rightarrow use symmetry of system

Director's Cut Extras

each bin contains some number of stars with fixed (known) mass, luminosity
to find totals, just sum over each bin
total number density of all stars is

$$
\begin{equation*}
n_{\mathrm{tot}}=\sum_{\mathrm{bin}} n_{\mathrm{bin}}=\sum_{\mathrm{bin}} \Phi(M) \Delta M \tag{15}
\end{equation*}
$$

total luminosity density: weight bins with luminosity

$$
\begin{equation*}
\mathcal{L}_{\mathrm{tot}}=\sum_{\mathrm{bin}} L(M) \Phi(M) \Delta M \tag{16}
\end{equation*}
$$

total mass density: weight bins with mass

$$
\begin{equation*}
\rho_{\mathrm{tot}}=\sum_{\mathrm{bin}} \mathcal{M}(M) \Phi(M) \Delta M \tag{17}
\end{equation*}
$$

