> Astro 406
> Lecture 11
> Sept. 20,2013

Announcements:

- PS 3 due now
- PS 4 available; due next Friday
- iClicker scores posted on Compass; check for accuracy!
- ASTR 401: outline due Monday

Last time: Gravity and galaxy dynamics

- gravity force (weight) test mass $\vec{F}=m \vec{g}$

Q: is an orbiting astronaut weightless?

- point mass $M: \vec{g}=-G M / r^{2} \hat{r}$
- spherical mass: $\vec{g}=-G M_{\mathrm{enc}}(r) / r^{2} \widehat{r}$

Q: Earth surface gravity: hollow core vs dense core?
Q: in hollow sphere, effect of adding mass outside?

Gravity and Rotation Curves

extremely important special case of dynamics: circular motion, with only gravity force acting
observable properties:

- distance from center r
- circular speed v_{c} at r : how to observe?
\Rightarrow together define rotation curve which as plot of $v_{c}(r)$ vs r
but gravity determines motion
so speed pattern \rightarrow probes gravity
n now can quantify how rotation curves measure gravity
circular motion: centripetal acceleration provided by gravity $v_{\text {circ }}^{2} / r=g(r)$
where $g(r)$ is gravity acceleration at r

$$
\begin{equation*}
v_{\mathrm{circ}}(r)=\sqrt{r g(r)} \tag{1}
\end{equation*}
$$

So: rotation curve measures gravity field $g(r)$!
For point mass M, then $g(r)=G M / r^{2}$
$\Rightarrow v_{\text {circ }}(r)=\sqrt{G M / r}(\mathrm{PS} 1)$
For spherical mass distribution, $g(r)=G m(r) / r^{2}$, where $m(r)=m_{\text {enc }}(r)$ is mass interior to or "enclosed" by r so: rotation curve \rightarrow gravity field \rightarrow mass distribution $m(r)$

$$
\begin{equation*}
m(r)=\frac{r v_{\mathrm{circ}}(r)^{2}}{G} \tag{2}
\end{equation*}
$$

ω rotation curve "weighs" galaxy!
a powerful tool!

Motions within the Milky Way

measure speeds via Q : how?
Doppler effect
measured $\lambda_{\text {obs }} \neq \lambda_{0}$ rest (lab)
sensitive to radial=line-of-sight v component if $v_{r} \ll c$:

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda}=\frac{\lambda_{\mathrm{obs}}-\lambda_{0}}{\lambda_{0}}=\frac{v_{r}}{c} \tag{3}
\end{equation*}
$$

full special relativity result, good for all v_{r}

$$
\begin{equation*}
\frac{\Delta \lambda}{\lambda}=\sqrt{\frac{1+v_{r} / c}{1-v_{r} / c}}-1 \tag{4}
\end{equation*}
$$

+

approaching source: $v_{r}<0 \Rightarrow \lambda_{\text {obs }}<\lambda_{0}$: blueshift receding source: $v_{r}>0 \Rightarrow \lambda_{\text {obs }}>\lambda_{0}$: redshift

Q: what is best way to measure shift for real astronomical objects?

In general, both the Sun and nearby stars all in motion around Galactic center and relative to each other

Q: what frame is best to describe our neighborhood?

Local Standard of Rest

the Sun, nearby stars each move w.r.t. the others
average motion of nearby stars:
"local standard of rest"
circular Galactic orbit at our Iocation: $R_{0}=8.5 \mathrm{kpc}$
all speeds relative to $\vec{v}_{\mathrm{Isr}}=\vec{v}_{0}$
want to measure both \vec{v}_{0} and "peculiar" relative motions that deviate from it

If we and all nearby stars moved with local std of rest, の Q: what would nearby star Doppler vr pattern look like?

Blast From the Past: Circular Motion

Recall that in circular motion:

- angular speed $\omega=d \theta / d t=\dot{\theta}=2 \pi / P$
- angular velocity $\vec{\omega}$: what sets direction?
- linear velocity $\vec{v}=\vec{\omega} \times \vec{r}$
- (tangential) speed $v=\omega r$, or $\omega=v / r$
- centripetal acceleration $\vec{a}_{c}=-v^{2} / r \widehat{r}=-\omega^{2} \vec{r}$

Measuring the Milky Way Rotation Curve

want to know circular orbit speed patten $v(R)$
vs Galactocentric radius R
for disk stars, gas

good news:

nature is kind-has given us the Doppler effect
\rightarrow gives speed measurement
and can determine very accurately!
bad news:
Q: what's the catch? or catches?

Relative Motions

Doppler measure star, gas speed that is

- relative to us-and we orbit too!
- velocity component along line of sight $v_{\text {Ios }}$ not transverse component v_{t}

have to
- measure observables
$v_{\text {los }}$ scanned across Gal. Iongitude ℓ
- work out how to go from these to what desired: $v(R)$

Note: derivation different from SG
. same result, but gives another perspective go with whatever works for you

Characterizing Physical Motions:

in Galactocentric coordinates:

$$
\vec{v}(R)=\vec{\Omega}(R) \times \vec{R}
$$

and

$$
\vec{\Omega}(R)=2 \pi / P(R) \hat{z}
$$

in magnitude, for circular motion

$$
\begin{equation*}
v(R)=\Omega(R) R=\frac{2 \pi R}{P(R)} \tag{5}
\end{equation*}
$$

so each of $v(R), \Omega(R), P(R)$ encodes equivalent info

The Problem

in general, $v_{\text {los }} \neq v$! some info lost!
$\stackrel{\text { To get a feel for what expected, let's try some simple }}{ }$ "toy models"

Place Your Bets

Prediction:
imagine $\Omega(R)=$ const $v s R$ for all Galaxy

Q: what is patter of rotation period $P(R)$?

Q: what is MW rotational motion like?

Q: what would $v_{\text {los }}$ pattern be?
plot $v_{\text {los }}$ vs Gal. Iongitude ℓ

iClicker Poll: The One Ring

Imagine: all gas lies interior ring at single radius $R<R_{0}$ and $\Omega(R)>\Omega\left(R_{0}\right)$
What is $v_{\text {los }}$ vs ℓ pattern?

A $v_{\text {Ios }}=0$ for all ℓ
B $\quad v_{\text {los }}$ changes across Galactic center signal drops smoothly to nonzero minimum at anticenter

C $v_{\text {los }}$ changes sign across Galactic center but no signal at all for some ℓ

D $v_{\text {los }}$ has same sign when signal nonzero but no signal at all for some ℓ

E none of the above

One Inner Ring

features:

- $v_{\text {los }}$ changes sign across Galactic center at thus is zero towards center at $\ell=0$
- $v_{\text {los }}$ maximum on sightline tangent to ring i.e., when $\ell_{\max }$ satisfies $R=R_{0} \sin \ell_{\max }$
- for $|\ell|<\ell_{\text {max }}$: signal from 2 points $Q:$ are $v_{\text {los }}$ signs the same?
- no gas found at $|\ell|>\ell_{\max }$
\rightarrow no signal at these longitudes
$Q:$ sketch of $v_{\text {los }} v s \ell ?$

Prediction: if all gas in exterior ring at $R>R_{0}$ and $\Omega(R)<\Omega\left(R_{0}\right)$ www: outer ring sketch Q : what is rotational motion like? $v_{\text {los }} v s \ell$ pattern?

Prediction: think of gas disk as superposition of rings
if $\Omega(R)$ decreases with R, Q : what is $v_{\text {los }}$ vs ℓ pattern?

WWW: velocity profile

