Astro 406 Lecture 11 Sept. 20, 2013

Announcements:

• PS 3 due now

 \vdash

- PS 4 available; due next Friday
- iClicker scores posted on Compass; check for accuracy!
- ASTR 401: outline due Monday

Last time: Gravity and galaxy dynamics

- gravity force (weight) test mass $\vec{F} = m\vec{g}$ Q: is an orbiting astronaut weightless?
- point mass M: $\vec{g} = -GM/r^2 \hat{r}$
- spherical mass: $\vec{g} = -GM_{enc}(r)/r^2 \hat{r}$
 - Q: Earth surface gravity: hollow core vs dense core? Q: in hollow sphere, effect of adding mass outside?

Gravity and Rotation Curves

extremely important special case of dynamics: circular motion, with only gravity force acting

observable properties:

- distance from center r
- circular speed v_c at $r \ Q$: how to observe?
- \Rightarrow together define **rotation curve**

which as plot of $v_c(r)$ vs r

but gravity determines motion

so speed pattern \rightarrow probes gravity

 $_{\scriptscriptstyle N}$ now can quantify how rotation curves measure gravity

circular motion: centripetal acceleration provided by gravity $v_{\rm circ}^2/r=g(r)$

where g(r) is gravity acceleration at r

$$v_{\rm Circ}(r) = \sqrt{rg(r)} \tag{1}$$

So: rotation curve measures gravity field g(r)!

For point mass
$$M$$
, then $g(r) = GM/r^2$
 $\Rightarrow v_{\text{circ}}(r) = \sqrt{GM/r} \text{ (PS 1)}$

For spherical mass distribution, $g(r) = Gm(r)/r^2$, where $m(r) = m_{enc}(r)$ is mass *interior* to or "enclosed" by rso: rotation curve \rightarrow gravity field \rightarrow mass distribution m(r)

$$m(r) = \frac{rv_{\rm circ}(r)^2}{G}$$
(2)

rotation curve "weighs" galaxy! a powerful tool!

ω

Motions within the Milky Way

measure speeds via *Q: how?* **Doppler effect**

measured $\lambda_{obs} \neq \lambda_0$ rest (lab) sensitive to radial=line-of-sight v component if $v_r \ll c$:

$$\frac{\Delta\lambda}{\lambda} = \frac{\lambda_{\rm obs} - \lambda_0}{\lambda_0} = \frac{v_r}{c}$$

full special relativity result, good for all v_r

$$\frac{\Delta\lambda}{\lambda} = \sqrt{\frac{1 + v_r/c}{1 - v_r/c}} - 1 \tag{4}$$

(3)

4

approaching source: $v_r < 0 \Rightarrow \lambda_{obs} < \lambda_0$: blueshift receding source: $v_r > 0 \Rightarrow \lambda_{obs} > \lambda_0$: redshift *Q*: what is best way to measure shift for real astronomical objects?

In general, both the Sun and nearby stars all in motion around Galactic center *and* relative to each other

Q: what frame is best to describe our neighborhood?

Local Standard of Rest

the Sun, nearby stars each move w.r.t. the others average motion of nearby stars:

"local standard of rest"

circular Galactic orbit at our location: $R_0 = 8.5$ kpc

all speeds relative to $\vec{v}_{\rm Isr} = \vec{v}_0$

want to measure both \vec{v}_0 and "peculiar" relative motions that deviate from it

If we and all nearby stars moved with local std of rest, \bigcirc Q: what would nearby star Doppler v_r pattern look like?

Blast From the Past: Circular Motion

Recall that in *circular motion*:

- angular speed $\omega = d\theta/dt = \dot{\theta} = 2\pi/P$
- angular velocity $\vec{\omega}$ Q: what sets direction?
- linear velocity $\vec{v} = \vec{\omega} \times \vec{r}$

1

- (tangential) speed $v=\omega r, \text{ or } \omega=v/r$
- centripetal acceleration $\vec{a}_c = -v^2/r\,\hat{r} = -\omega^2\vec{r}$

Measuring the Milky Way Rotation Curve

want to know circular orbit speed patten v(R)vs Galactocentric radius Rfor disk stars, gas

good news:

nature is kind—has given us the Doppler effect \rightarrow gives speed measurement and can determine very accurately!

bad news:

Q: what's the catch? or catches?

 ∞

Relative Motions

Doppler measure star, gas speed that is

- relative to us-and we orbit too!
- velocity component along line of sight $v_{\rm los}$ not transverse component $v_{\rm t}$

have to

S

measure observables

v_{los} scanned across Gal. longitude 化

• work out how to go from these to what desired: v(R)

Note: derivation different from SG same result, but gives another perspective go with whatever works for you

Characterizing Physical Motions:

in Galactocentric coordinates:

$$\vec{v}(R) = \vec{\Omega}(R) \times \vec{R}$$

and

$$\vec{\Omega}(R) = 2\pi/P(R) \ \hat{z}$$

$$v(R) = \Omega(R) \ R = \frac{2\pi R}{P(R)}$$
(5)

Ζ.

so each of $v(R), \Omega(R), P(R)$ encodes equivalent info

The Problem

in general, $v_{\text{los}} \neq v!$ some info lost!

⁵ To get a feel for what expected, let's try some simple "toy models"

Place Your Bets

Prediction: imagine $\Omega(R) = const$ vs R for all Galaxy

Q: what is patter of rotation period P(R)?

Q: what is MW rotational motion like?

Q: what would v_{los} pattern be?

plot v_{IOS} vs Gal. longitude ℓ

iClicker Poll: The One Ring

Imagine: all gas lies interior ring at single radius $R < R_0$ and $\Omega(R) > \Omega(R_0)$ What is v_{los} vs ℓ pattern?

A
$$v_{\text{los}} = 0$$
 for all ℓ

- B v_{los} changes across Galactic center signal drops smoothly to nonzero minimum at anticenter
- С
- $v_{\rm los}$ changes sign across Galactic center but no signal at all for some ℓ
- D
- $v_{\rm los}$ has same sign when signal nonzero but no signal at all for some ℓ
- 12

none of the above

One Inner Ring

features:

- v_{los} changes sign across Galactic center at thus is zero towards center at $\ell = 0$
- v_{los} maximum on sightline tangent to ring i.e., when ℓ_{max} satisfies $R = R_0 \sin \ell_{\text{max}}$
- for $|\ell| < \ell_{max}$: signal from 2 points *Q*: are v_{los} signs the same?
- no gas found at $|\ell| > \ell_{max}$ \rightarrow no signal at these longitudes

Q: sketch of v_{los} *vs* ℓ ?

Vlos	v
\mathcal{A}	

13

Prediction: if all gas in exterior ring at $R > R_0$ and $\Omega(R) < \Omega(R_0)$ www: outer ring sketch Q: what is rotational motion like? v_{los} vs ℓ pattern?

Prediction: think of gas disk as superposition of rings if $\Omega(R)$ decreases with R, Q: what is v_{los} vs ℓ pattern?

www: velocity profile