Astro 406 Lecture 12 Sept. 23, 2013

Announcements:

- PS 4 due Friday
- iClicker scores posted on Compass; check for accuracy!
- ASTR 401: outline due today

Last time: internal Galactic motion—orbits in the disk we want to construct a rotation curve v(R) vs RQ: challenges in measuring circular speed v(R) pattern? Q: what Galaxy component(s) prodvids useful velocity tracers? Q: what observables can we directly measure?

Galactic Rotation Observed: Gas Components

Doppler requires a line to be shifted but nature has been kind: strong lines available:

- 21 cm from atomic H
- rotational lines from CO molecules

bonus: nature has been really kind: both are in radio

 \rightarrow no dust extinction \rightarrow can see whole Galaxy!

observables:

N

- Doppler shift \rightarrow line-of-sight (radial) velocity v_{los}
- \bullet measure in plane as a function of Galactic longitude ℓ

```
www: 21 cm (\ell, v_{\text{IOS}}) plot
www: CO (\ell, v_{\text{IOS}}) plot
```

Q: $v \neq 0$ for all ℓ : implications? Q: what regions populated? unpopulated?

Galactic Rotation Overview

- $v \neq 0$ for all ℓ :
- our Galaxy does not rotate as a solid body
- different Galactocentric radii have different v, Ω \Rightarrow differential rotation

Signal only populates some regions:

- for $\ell \in (90^{\circ}, 180^{\circ})$, $v_{los} < 0$ only and $v_{los} > 0$ only for $(270^{\circ}, 360^{\circ})$
- \bullet in other regions, both $v_{\rm los}$ signs found

Q: expectations for one inner ring?

ω

One Inner Ring

features:

- v_{los} changes sign across Galactic center at thus is zero towards center at $\ell = 0$
- v_{los} maximum on sightline tangent to ring i.e., when ℓ_{max} satisfies $R = R_0 \sin \ell_{\text{max}}$ and here $v_{\text{los}} = v(R)$
- for $|\ell| < \ell_{max}$: signal from 2 points *Q*: are v_{los} signs the same?
- no gas found at $|\ell| > \ell_{max}$ \rightarrow no signal at these longitudes

observations: for $0 < \ell < 90^{\circ}$, strong $v_{\text{los}} > 0$

- - Galactic rotation carries us in this direction

One Outer Ring

```
Now imagine a single outer ring
i.e., with R > R_0
and assume \Omega(R) < \Omega(R_0)
```

```
Q: v_{\text{los}} sign for \ell \in (0, 90^{\circ})?
(90°, 180°)?
(180°, 270°)?
(270°, 360°)?
```


An exterior ring at $R > R_0$ with $\Omega(R) < \Omega(R_0)$:

- $v_{\mathsf{IOS}} < 0$ for $\ell \in (0, 180^\circ)$
- $v_{\text{los}} > 0$ for $\ell \in (180^{\circ}, 360^{\circ})$

Recall *interior ring* result for $\Omega(R) > \Omega(R_0)$:

- $v_{\text{los}} > 0$ for $\ell \in (0, \ell_{\text{tan}})$
- $v_{\text{los}} < 0$ for $\ell \in (360^{\circ} \ell_{\text{tan}}, 360^{\circ})$

Note: if $\Omega(R)$ decreases with R

- only some regions populated
- matching the observed pattern!

observational confirmation that $\Omega(R)$ decreases with R

- *Q: implications for orbit periods?*
- *Q: what does Galactic motion look like?*
 - Q: what about orbit velocities?

orbit periods: $P(R) = 2\pi/\Omega(R)$ $\rightarrow P(R)$ increases \Rightarrow interior orbits "laps" us, but we "lap" exterior orbits!

orbit velocity: $v(R) = \Omega(R) R$

- \bullet product of decreasing and increasinng functions of R
- need to examine in detail to see what "wins"

Milky Way Rotation Curve: Summary

Measure v(R) vs R, and plot: rotation curve

www: 21 cm velocity profile: SG fig 2.18

Trends:

 ∞

- difficult to measure accurately for $R \lesssim 2$ kpc some indiation of roughly linear increase $v(R) \propto R$
- beyond this, $v(R) \rightarrow v_0 \approx 220 \text{ km/s} = \text{const}$
- → "flat rotation curve"

But recall: for circular orbits

$$m(r) = \frac{v^2 r}{G} \tag{1}$$

since $v(r) = v_0$, $m(R) \propto R!$

Q: where have you seen this before (hit: PS2)?

Q: what does this mean for Galactic density?

the linear increase of $m(r) \propto r$ is identical to result from isothermal sphere! ...about which you are experts (PS2!) e.g,. density, for $r \gtrsim R_0$

$$ho(r) \propto rac{1}{r^2}$$

Q: other implications of $m(R) \propto R$?

Milky Way Rotation Curve: Implications

Flat rotation curve gives

$$m_{\rm enclosed}(R) \propto R$$
 (2)

trend continues for largests measured R in far outer regions with little/no stars and gas

Mass grows even when *no luminous matter present*! $m(50 \text{ kpc}) \gg M_{\star} + M_{\text{gas}}$

we have a big discrepancy! *Q: what are logically possible ways out?*

Flat Rotation Curves: New Gravity Physics?

Flat rotation curve + gravitational dynamics $\rightarrow M_{\rm tot} \gg M_{\rm lum}$

What explains this mismatch?

Approach 1: reject assumptions, avoid conclusions Note that result rests on Newtonian gravity applied to Galactic scales but we have never tested gravity on these scales

What if there is a fundamental problem with our present understanding of gravity?

- then mass mismatch really probes new gravity behavior
- this is an active area of research!
- $\stackrel{\leftarrow}{=}$ Q: arguments against this approach?
 - Q: alternatives if this approach fails, i.e., gravity theory is right?

Flat Rotation Curves: Dark Matter

New gravity theory, like any new theory

must explain all existing data – not just the new anomaly

- Newton/Einstein explain terrestrial, solar system, stellar data with great precision
- new theory must do all of this too must "look like" standard gravity on small scales but change only on large scales \gtrsim 1 kpc
- very difficult to do but not ruled out!

Approach 2: accept assumptions, live with conclusions Alternative possibility: we do understand gravity and thus must live with $M_{\rm tot} \gg M_{\rm lum}$

 $\stackrel{_{
m in}}{_{
m in}}$ \rightarrow most (\sim 80 – 90%) of MW is dark matter

Our Dark Halo

How far does the dark matter extend?

13

flatness of rotation curve well-measured out to R = 20 kpc Magellanic clouds at \sim 50 kpc also fall on trend \rightarrow dark matter extends at least this far

new component Milky Way structure: **dark halo** dominates mass of Galaxy visible stars and gas embedded at center of halo

Q: what can we say about the nature of dark matter?

Dark Matter

What we know is all in the name!

- gravitates \rightarrow has mass ("matter")
- non-luminous: does not emit (visible) light ("dark")
- Q: but can say more about how it interacts with light
- also: cannot strongly absorb light *Q: why?* (no/weak EM interactions)
- probably: no/weak strong (nuclear) interactions Q: why? that's all we know for sure!

What is the DM? *Q: you tell me...*

Dark Matter Candidates

black holes neutron stars white dwarfs compact objects Jupiters, brown dwarfs

hot $\sim 10^6$ K gas cold gas neutrinos relic exotic particles from earliest moments of big bang

Q: how do we figure out which (if any) are right?

iClicker Poll: Dark Matter Gut Feeling Twofer

Vote your conscience!

1. Which dark matter candidates seem **most plausible** to you?

1. Which dark matter candidates seem least plausible to you?

A black holes

- B other compact objects: planets, brown dwarfs, white dwarfs, neutron stars
- C

16

very hot gas or very cold gas

D	neuti
---	-------

The Search for Dark Matter

Does dark matter really exist in the Milky Way? If so, what form does it take?

 \Rightarrow difficult problem! ("highly non-trivial") have to work hard and be clever

Next week: we will cross off 5 lines from our list! The rest: still open possibilities

Galactic Rotation and Doppler Surveys: Derivation

Basic idea: we can only measure the

- line-of-sight component of the
- velocity relative to us

Us:

- Galactocentric radius \vec{R}_0
- angular velocity $\vec{\Omega}_0$
- linear velocity $\vec{v}_0 = \vec{v}(R_0) = \vec{\Omega}_0 \times \vec{R}_0$

Them (i.e., some arbitrary point in disk):

- Galactocentric radius \vec{R}
- angular velocity $\vec{\Omega}$
- linear velocity $\vec{v} = \vec{v}(R) = \vec{\Omega} \times \vec{R}$

^b relative distance (i.e., distance from them to us): $\vec{d} = \vec{R}_0 - \vec{R}$

Here Goes...

diagram: $\vec{R}_0, \vec{R}, \vec{d}, \ell$

relative velocity (them vs us):

$$\Delta \vec{v} = \vec{v}(\vec{R}) - \vec{v}(\vec{R}_0) = \vec{\Omega} \times \vec{R} - \vec{\Omega}_0 \times \vec{R}_0$$
(3)

but $\vec{R} = \vec{R}_0 - \vec{d}$ $\Delta \vec{v} = (\vec{\Omega} - \vec{\Omega}_0) \times \vec{R}_0 - \vec{\Omega} \times \vec{d} \qquad (4)$ and along line-of-sight \vec{d} :

$$v_{\text{los}} = \hat{d} \cdot \Delta \vec{v} = \frac{\vec{d}}{d} \cdot \Delta \vec{v} = \frac{\vec{d}}{d} \cdot (\vec{\Omega} - \vec{\Omega}_0) \times \vec{R}_0 - \frac{\vec{d}}{d} \cdot \vec{\Omega} \times \vec{d}$$
(5)

vector ID:
$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$$

 $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{c} \times \vec{a}) \cdot b$

$$v_{\rm los} = \frac{\vec{d} \times \vec{R}_0}{d} \cdot (\vec{\Omega} - \vec{\Omega}_0) \tag{6}$$

and since $\vec{d} \times \vec{R}_0 = -dR_0 \sin \ell \hat{z}$, at last we get

Ta da! The Magic Formula

$$v_{\text{los}} = \left[\Omega(R) - \Omega(R_0)\right] R_0 \sin \ell = \left(\frac{v}{R} - \frac{v_0}{R_0}\right) R_0 \sin \ell \qquad (7)$$

Q: what if $R = R_0$? $R < R_0$? $R > R_0$?

Prediction: if $\Omega(R)$ decreases w/ R Q: v_{los} signs? diagram: top view, plot v_{los} vs ℓ