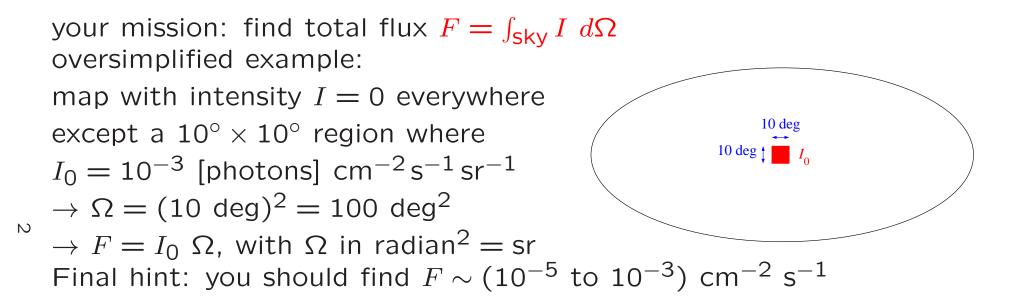
Astro 406 Lecture 13 Sept. 25, 2013

Announcements:

• PS 4 due Friday


helpful(?) hint on next slide

- iClicker scores posted on Compass; check for accuracy!
- ASTR 401: introduction draft due Monday

PS4 Hint: Intensity and Flux

recall: flux F = power/areawell-defined for pointlike (unresolved) source but what if light source is resolved = spread over sky? intensity $I = flux/(area on sky) = flux/solid angle = dF/d\Omega$

PS4: observed intensity map for ²⁶AI decay gamma rays note: grid line spaced every 30° in ℓ and b

Last time: Milky Way rotation curve

- Q: what's a rotation curve?
- Q: what does ours look like?
- *Q*: where does the Sun fall on the curve?
- *Q*: what does it mean?

Milky Way Rotation Curve: Summary

Measure circular speed V(R) vs R, plot: "rotation curve" *Q: sketch Galactic rotation curve? where does Sun appear?* www: real data

beyond inner MW, $v(R) \rightarrow v_0 \approx 220 \text{ km/s} = \text{const}$ \rightarrow "flat rotation curve"

But recall: for circular orbits

$$m(r) = \frac{v^2 r}{G} \Rightarrow m(50 \text{ kpc}) \gg M_{\star} + M_{\text{gas}}$$
 (1)

Mass grows even when no luminous matter present!

Either:

(1) derivation wrong (Newton/Einstein gravity fails!), or (2) most of MW ($\sim 80 - 90\%$!) is in halo of dark matter

Dark Matter Candidates

black holes neutron stars white dwarfs Jupiters, brown dwarfs hot $\sim 10^6$ K gas neutrinos relic particles from earliest moments of big bang

Q: how do we figure out which (if any) are right?

С

Worked Stupid Example: JelloTM Dark Matter

Imagine: Milky Way dark matter is JelloTM!?! \Rightarrow 80–90% of Milky Way mass is JelloTM dark matter (JDM) this has consequences!

Assume: parfait-sized blobs, $m_{blob} = 100 \text{ g}$ but local dark matter density roughly $\rho_{dm} \sim 10^{-24} \text{ g/cm}^3$ [you'll improve this estimate in PS4]

but $\rho_{\text{Jello}} \approx \rho_{\text{water}} = 1 \text{ g/cm}^3$ Q: how can we have $\rho_{\text{dm}} \neq \rho_{\text{Jello}}$? Q: so what is number density of jello blobs?

σ

dark matter density $\rho_{dm} \ll \rho_{Jello}$:

- \rightarrow Milky Way volume is not solidly filled with Jello
- \rightarrow mostly empty space between blobs

JDM number density is $n_{\rm jdm} = \rho_{\rm dm}/m_{\rm blob} \sim 10^{-26}$ particles/cm³

typical interparticle spacing: $\ell = n_{\rm jdm}^{-1/3} \simeq 5000 \ {\rm km} \lesssim {\rm R}_{\rm Earth}$

But if they are the DM, they are everywhere! including the solar neighborhood! \Rightarrow as the Solar System orbits the MW we move through a $v = v_{\text{circ},\odot} \sim 200 \text{ km/s DM}$ "blizzard"!

Q: what would this mean? How could we test it?

As we move through JDM, some hits Earth!

Calculate: mean free time against JDM-Earth collisions recall: $\tau = 1/(n\sigma v)$ here: $n = n_{jdm}$, $v = v_{circ,\odot}$, and $\sigma \approx \pi R_{Earth}^2 = 1.3 \times 10^{18} \text{ cm}^2 \text{ Q: why this?}$

So if JelloTM is the Dark Matter, then we have one JDM fall from the sky every

$$\tau_{\rm jdm} = \frac{1}{n_{\rm jdm} \sigma_{\oplus} v_{\rm circ,\odot}} = 4 \, \sec$$
 (2)

Q: how does this rule out JDM as the Dark Matter?

Q: loopholes for JDM?

∞ *Q*: Larger lessons for ruling Dark Matter candidates in or out?

The Search for Dark Matter

Does dark matter really exist in the Milky Way? If so, what form does it take?

 \Rightarrow difficult problem! ("highly non-trivial") have to work hard and be clever

This week: we will cross off half our list!

Ideal tool: a method which

- detects any kind of mass
- is accessible to telescopes, ideally optical ones
- is independent of rotation curves and can be a consistency check on their results

ဖ

In fact-nature has been kind, and Einstein showed the way...

Gravitation Revisited

Newton gravity force law

$$\vec{F}_{\text{grav}} = -\frac{GMm}{r^2} \ \hat{r} \tag{3}$$

implies that if M moves $\rightarrow r$ changes

 → gravity force changes instantaneously over all space!
 "signal" of motion instantaneously transmitted throughout the universe

Einstein sez: this is *totally illegal! an unmitigated disaster!* no signal—including gravity—can move faster than c!

Special relativity built to address this problem $\stackrel{\scriptstyle {}_{\scriptstyle {}_{\scriptstyle {}}}}{}$ Maxwell's Equations already have signal speed = c \rightarrow no need to revise E&M

The Equivalence Principle Revisited

How to go about revising gravity? Where to start?

Recall Galileo atop the Tower of Pisa:

gravity \rightarrow all objects move (accelerate) the same way in free fall regardless of object mass, shape, composition not new result, but different explanations...

Newton sez:

it just so happens that gravitational mass the way objects "feel" or "couple to" gravity $F_{\text{grav}} = m_{\text{grav}}g$ is always exactly the same as inertial mass the way objects resist acceleration $a = F/m_{\text{inert}}$

 $\stackrel{\square}{=}$ Einstein sez:

too amazing to be a coincidence, must be deeper...

Einstein's Equivalence Principle

Einstein notes:

12

Gravity causes acceleration, but in "democratic" way: all objects accelerate the same

Einstein's Equivalence Principle:

in a closed room, no experiment can distinguish (non-gravitational) acceleration from gravity

But note: acceleration is aspect of motion relates to objects' travel through space and time → gravity=acceleration equivalence will have impact (i.e., bizarreness) on space and time

Rocket Thought Experiment

www: illuminating animation

Consider flashlight aimed horizontally:

★ light ray deflected

iClicker Poll: Rocket Lasers

Install lasers and detectors in rocket basement and attic measure λ_{obs} during acceleration Resulting effect on photons?

- A no effect: λ unchanged if emitter and detector both accelerate with rocket
- B attic detectors see *blueshift* basement detectors see *redshift*
- С

E

- attic detectors see *redshift* basement detectors see *blueshift*
- D both detectors see *redshift*
- 14
- both dotoctors can bluechift
- both detectors see blueshift

Rocket experiment:

• light bending

<u>1</u>5

 as photon travels, acceleration changes detector v relative to emitter upgoing (downgoing) photon seen to redshift (blueshift)

But by equivalence principle:

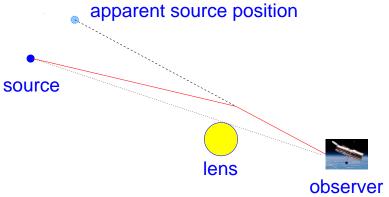
must find same result due to gravity, so:

★ gravity bends light rays

gravitational lensing

 * observers in basement see blueshift of attic photons! and observers in attic see redshift of basement photons!
 gravitational redshift/blueshift

Note: gravitational red/blueshift confirmed in lab! *Q: how would you do the experiment? what are you looking for?* www: Pound-Rebka expt


Q: how to test lensing effects in real world?

Light Bending: The Sun

In principle: all gravitating objects bend light including you, me, the earth...
In practice: need strong gravity source to create effect large enough to observe

Einstein (1915) devised first test: the Sun

- Sun's gravity deflects starlight rays so
- the stronger the gravity along the path the bigger the deflection

 \Rightarrow biggest effect for starlight just ''grazing'' edge of Sun

 G_{5} Q: why is this technically challenging to see?

Q: how to get around the problem?

1919 Eclipse: Give it up for Big Al!

Problem: Sun's glare obscures surrounding starlight Solution: block glare with eclipse!

1919: total solar eclipse in Southern hemisphere expedition led by Sir Arthur Eddington * starlight bent! Woo hoo! * relativistic gravity confirmed!

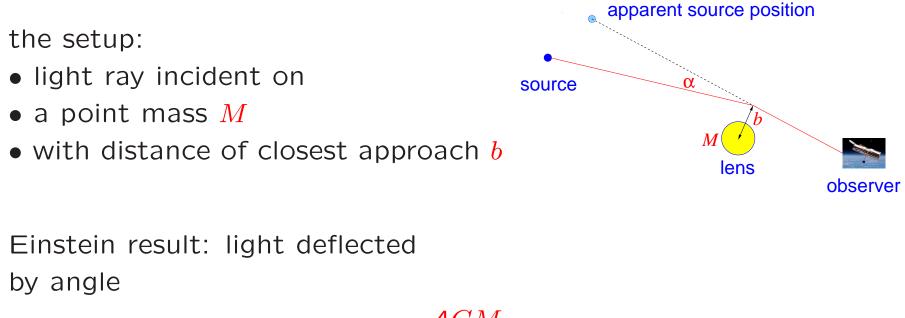
★ Einstein an instant celebrity

www: NYTimes headlines

• all starlight bending experiments confirm Einstein!

Gravity 2.0: General Relativity

Einstein's gravity: General Relativity


Newton: matter causes force (gravity) → particles follow curved lines in "flat" (Euclidean geometry) space

Einstein: bold leap, rejected Newton matter causes spacetime to be "curved" → particles follow straight lines ("geodesics") in curved space

space and time dynamic not fixed once and for all

18

Light Bending Quantified: Point Mass

$$\alpha = \frac{4GM}{c^2b} \tag{4}$$

Q: how could this be useful for detecting MW dark matter?