Astro 406 Lecture 16 Oct. 2, 2013

Announcements:

- PS 5 due Friday
- ASTR 401: introduction draft due Monday

Last time: The Galactic Nucleus and Sgr A*

- Q: what is Sgr A? Sgr A^* ?
- Q: why do we believe Sgr A^* is a black hole?
- Q: what's a black hole?
- Q: what conditions needed to form a black hole?
- _ Q: how can we see black holes?!?

black holes: in (illegal!) Newtonian language regions where $v_{\rm esc} = \sqrt{2GM/r} > c$

- light cannot escape: black
- but c is max speed \rightarrow nothing else escapes: hole "cosmic roach motel"

black hole size & recipe: Schwarzchild radius

$$R_{\rm Sch} = \frac{2GM}{c^2}$$

(1)

- surface at R_{Sch}: horizon one-way surface
 "cosmic roach motel"
- any mass M can be BH if size $< R_{Sch}(M)$

How do we "see" a black hole? We don't...directly but matter can emit light before falling in

^N Milky Way center: Sgr A* has $M_{SgrA*} \approx 4 \times 10^6 M_{\odot}$ if black hole: $R_{Sch} = 0.074$ AU = 3.6×10^{-7} pc

Infalling Matter: Tides

equivalence principle slogan:

"everything falls the same way: gravity is democracy"

Lawyer's fine print:

only for point objects with same path

on different paths your mileage may vary

Consider

- an extended object (i.e., not point mass)
- undergoing free fall (gravity is only force)
- in a spatially-varying gravity field
- $_{\omega}$ Q: effect on falling object?

If extended object in a gravity field,

different parts feel different acceleration: tides

- stretched along radial direction
- squeezed along tangential direction
- Itidal stresses more severe the closer to the gravity source Q: fate of an infalling gas? infalling astronaut?

Galactic Weather Forecast: Perfect Storm?

2012: dense gas cloud found moving toward Sgr A^*

www: movie, artist sketch

- cloud mass $\sim M_{\rm Earth}$
- highly eccentric orbit: closest approach $\sim 3100 r_{
 m Sch}$
- cloud tial disruption already has begun

Leading edge of cloud has just now passed its closest approach ("pericenter") What happens when the cloud bulk passes Sgr A*? Not sure! But could lead to X-ray flare \rightarrow probes Sgr A* environment, accretion physics Stay tuned...

The Future: Resolving the Shadow

Sgr A* horizon angular size $\theta_{hor} = R_{Sch}/R_0 \approx 10^{-5}$ arcsec $\rightarrow tiny!$ but largest known BH angular size \rightarrow our best chance to see a BH horizon

But how to resolve such a small angular size?

observing at wavelength λ , with scope diameter Ddiffraction smears out angles $\theta_{diff} = 1.2\lambda/D$ to beat this, using radio waves $\lambda \sim 1 \text{ mm}$ require diameter $D > \lambda/\theta_{hor,rad} \sim 10,000 \text{ km}$ Q: about how big is this? how can we build such a telescope?

σ

need telescope of diameter $D \sim 10,000 \ \rm km \sim R_{Earth}$ can't build a dish this big!

but: if we spread many dishes across the globe and *combine* their signals

challenging: must preserve phase information-interferometry effective diameter equivalent to largest baseline \rightarrow Very Large Baseline Interferometry

dedicated VLBI project: www: Event Horizon Telescope under way, will soon resolve the horizon! www: expected image

- shadow image would confirm Sgr A* is a black hole
- if orbiting "hot spots" \rightarrow can test general relativity!

Hypervelocity Stars

2005: a star discovered:

- mass $3M_{\odot} \rightarrow$ lifespan $\tau \sim 100$ Myr
- distance (from us) $d \sim 40-70$ kpc!
- line-of-sight speed $v_{los} = 850 \text{ km/s!}$
- direction \hat{v} : radially away from MW center!

Q: why is it so weird to see it where it is? Q: what is odd about its velocity?

Q: what is the likely origin of this star?

Location: this star lives far outside disk \rightarrow no star formation! but lifetime is relatively short \rightarrow how'd it get there?

Speed: very fast, $\gg v_{rot} \sim 200 \text{ km/s}$ in fact, $v > v_{escape}!$ \rightarrow this star is not bound to the MW! will leave and not return! ...and it came from the Galactic center

 \rightarrow All point to eject from Sgr A*! how? maybe part of a binary partner went in, it went out

9

other "hypervelocity stars" found since indication that our BH does feed on stars

Globular Clusters

spherical stellar systems

- \bullet about ~ 150 clusters found in MW
- also found in other galaxies

www: globular clusters

10

typical mass: $10^5 - 10^6 M_{\odot}$ \rightarrow typical number of stars $\sim 10^6$

typical size (core radius): $r_{\rm C} \sim 1.5$ pc \rightarrow huge density of stars!

velocity distribution—"histogram" of star speeds: Q: what do you expect? why must there be a spread in star v? Q: what if there is global rotation? dark matter?

Globular Cluster Velocities Observed

cluster has mass \rightarrow gravity \rightarrow all stars must be accelerated \Rightarrow must find distribution of velocities

11

indeed we do: typical line-of-sight star speed $v_r \sim 7 \text{ km/s}$ orbits not confined to a plane! some nearly circular, most eccentric \rightarrow pass near center velocities in all directions (isotropic)

rotation: no evidence found \rightarrow can't be large would lead to flattened=elliptical shape *dark matter*: observed luminous mass sufficient to account for observed motions \rightarrow little/no DM unlike galaxies \rightarrow different origin?

iClicker Poll: Globular Cluster HR Diagram

stars GC in \approx same distance to us \rightarrow app. mag vs color \Leftrightarrow L vs T (HR diag) www: GC HR diagram

What does the diagram suggest?

A the cluster is very young

- В
- the cluster is very old
- C the cluster is to distant to see high-mass stars
- $\frac{1}{2}$ D the cluster was born without low-mass stars

Globular Cluster HR Diagram

Q: what is prominent? what's missing? www: HRD animations

```
upper main seq gone \rightarrow GCs old
key feature: MS "turnoff"
\rightarrow stars just leaving MS today
www: colorized HR diagram w/ turnoff
L_{TO} \rightarrow m_{TO}
Q: what use is this? \rightarrow t_{TO}: age of cluster best data: t_{GC} = 12.6
Gyr (> 10.4 Gyr at 95% CL)
```

key point: cluster age < age of universe $\equiv t_0$ $\Box \quad Q$: why can we be sure of this? $\rightarrow t_0 > 10.4$ Gyr at 95% CL

Globular Cluster Structure

spherical \rightarrow can recover radial density $\rho(r)$ from observed intensity $I(\theta)$ pattern Q: what steps needed?

www: GC profiles core at $r_c \sim 1.5 \text{ pc} \rightarrow \text{const}$ density $\sim 10^4 M_{\odot} \text{ pc}^{-3}$ Q: night sky of a GC planet?

outer "tidal" radius $r_{\rm tide} \sim 50~{\rm pc}$ typical line-of-sight star speed $v_r \sim 7~{\rm km/s}$

Tides Revisited: Stripping

acceleration *different* at two nearby points:

$$g_{\text{tide}} \equiv \Delta g = g(R+d) - g(R)$$
 (2)

$$\approx d \left. \frac{\partial g}{\partial R} \right|_R \tag{3}$$

$$\frac{2GMd}{R^3} \quad \text{for } d \ll R \tag{4}$$

 \overrightarrow{G} Q: what does the sign mean?

Tidal stripping: when do external tides (from M, R) overcome self-gravity (of m, r)?

$$\frac{g_{\text{tide}}}{\frac{2GMr}{R^3}} = \frac{g_{\text{self}}}{r^2}$$
(5)
(6)

 \rightarrow stripped at distance

$$r_{\text{tide}} = \left(\frac{m}{2M}\right)^{1/3} R \tag{7}$$

Note: this is a rule of thumb

full, detailed calculation gives r_t up to a numerical factor of order unity Q: how to test this with globular clusters?

For globular clusters in Galaxy:

$$r_{\rm tide} = \left(\frac{m_{\rm gc}}{2M_{\rm MW}}\right)^{1/3} R_{\rm MW} \sim \left(\frac{10^6 \ M_{\odot}}{10^{12} M_{\odot}}\right)^{1/3} 10 \ \rm kpc \sim 100 \ \rm pc \ (8)$$

agrees with observed GC values!

 \rightarrow any stars outside this radius are already gone!

Note: unclustered "field" stars in stellar halo (spheroid) low metallicity, large ages and similar spherical spatial distribution to GCs *Q: implication?*