Astro 406 Lecture 20 Oct. 11, 2013

Announcements:

• PS 6 due now

 \vdash

- Good news: no problem set next week
 Bad news: Midterm Exam next Friday in class
 www: exam info
- ASTR 401: next draft due Monday

Last time: out of the Milky Way, onward to galaxies

Q: Edwin Hubble's key contribution to basic nature of Galaxies?

- Q: main galaxy morphologies (shapes)?
- *Q: difference between flux and surface brightness/intensity?*
- *Q*: what is special about surface brightness?
- *Q: implications for resolved objects (Galactic nebulae, external galaxies?)*

Conservation of Surface Brightness

resolved objects subtend a nonzero angular area Ω on sky surface brightness or intensity: $I = F/\Omega$

but solid angle *defined* for sphere rwith "cap" of surface area $S: \Omega = S/r^2$

just as for circle with arc s has $\theta = s/r$ and so a miracle occurs

$$I = \frac{F}{\Omega} = \frac{L/4\pi r^2}{S/r^2} = \frac{L}{4\pi S}$$
(1)

independent of distance! *surface brightness conserved!* if not absorption and not cosmological effects

thus: the same resolved object at different distances
will have the same intensity!
www: all sky views: compare MW and nearby galaxies

The Glowing Sky

the night sky is not totally dark!

at a dark site, on a moonless night, looking at a ''blank'' region far from Milk Way the sky has intensity $I_{\rm sky}\sim 23~{
m mag}~{
m arcsec}^{-2}$

- crazy units aside, key point is $I_{sky} > 0!$
- what produces this surface brightness?
 www: sky glow sources

Q: why is this terrible for extragalactic astronomers?

- Q: what must be done when observing galaxies?
- $_{\omega}$ Q: what problems can this create?

Sky Glow as "Light Pollution"

we want to measure intensity = surface brightness of galaxies but the sky itself has its own intensity

want to measure galaxies down to $\sim 26 \text{ mag arcsec}^{-2}$ \rightarrow galaxy signal is just $\sim 6\%$ of sky brightness!

buried in "noise" of sky background

- (1) have to measure intensity both on source, off source
- (2) subtract carefully

4

(3) low-intensity regions (galaxy outskirts) can be lost in background

Nontrivial! Note that total sky glow has more flux than total from resolved objects!

Spiral Galaxies: Dynamics

- Q: how did we measure the rotation of the Milky Way?
- Q: can this technique be used for other spirals?
- Q: what if the galaxy's center at rest respect to us?
- Q: what if the galaxy as a whole moves with respect to us?
- Q: what if the galaxy is "tilted" on the sky?
- *Q:* what orientation most favorable for measuring rotation? which is least favorable?
- Q: if results are like Milky Way, what do we expect?

measure rotation using tried-and-true technique:

via shifts neutral H 21 cm line

good news: radio interferometry-excellent angular resolution \rightarrow can scan across disk, get line-of-sight V profile

$$V_r = V_{\text{gal}} + V(R)\cos\phi\sin i \tag{2}$$

φ ∈ (0, 2π): azimuth (polar angle) *i*: "inclination" or tilt w.r.t. plane of sky *i* ∈ (0, π/2) = (face-on, edge-on)
21-cm velocity "spread":

$$\Delta V_{\max,\min} = (V_r - V_{\text{gal}})_{\max,\min} = \pm V(R) \sin i \qquad (3)$$

Rotation curve: V(R) vs R \circ Q: what feature(s) imply dark matter is needed?

iClicker Poll: Spiral Rotation Curves

It's the early 1960's and you are Vera Rubin Measuring rotation curves for many spiral galaxies if flat V(R) beyond luminous region \rightarrow dar matter needed What will you find, Prof. Rubin?

- A > 90% of spiral galaxies have dark matter
- **B** 50% to 90% of spiral galaxies have dark matter
- C 10% to 50% of spiral galaxies have dark matter
- D < 10% of spiral galaxies have dark matter

Rotation Curves: Flat as Far as the Eye Can See

For all spiral galaxies: $V(R) \approx \text{const}$ even when only gas, no stars recall: $V^2 \simeq GM(r)/r$ outside of mass, $V \propto 1/\sqrt{r}$ but $V \text{ const} \rightarrow M(r) \propto r$ \rightarrow mass but no light **dark matter**

ubiquitous: **all galaxies have DM** dwarf galaxies have more than giant spirals! so: *dark matter is universal – not peculiar to MW*

 \odot

how much dark matter? useful diagnostic tool: "mass-to-light" ratio M/Li.e., ratio of mass to luminosity can measure for different systems, compare

for local solar neighborhood (mostly stars, not DM-dominated):

$$\left\langle \frac{M}{L} \right\rangle_{\text{local}} = \left\langle \frac{M}{L} \right\rangle_{\star} = \frac{\rho}{\mathcal{L}} = 0.7 M_{\odot} / L_{\odot}$$
 (4)

galaxy halos:

$$4 \frac{M_{\odot}}{L_{\odot}} \lesssim \left(\frac{M}{L}\right)_{\text{halo}} \lesssim 18 \frac{M_{\odot}}{L_{\odot}}$$
(5)
$$\Rightarrow \left(\frac{M}{L}\right)_{\text{halo}} \gg \left(\frac{M}{L}\right)_{\star}$$
(6)

 $\circ \rightarrow DM$ dominates by factor 6-20!

Dark Matter Candidate: Cold Gas

imagine dark matter is all *cold gas*

Q: why must it emit light?

Q: what kind of light?

Q: how could we look for this?

Q: how could such dark matter "hide"?

Cold Gas as Dark Matter?

recall Wien's law-thermal radiation color: $\lambda_{peak} \propto 1/T$ hotter \leftrightarrow bluer, colder \leftrightarrow redder

if gas has $T\ll$ 3000 K, then $\lambda_{\rm peak}$ in IR or radio very dim at optical wavelengths

11

suggests obvious test: look for cold gas halos of galaxies \Rightarrow search for thermal infrared or radio

But: thermal emission depends strongly on Tfor object at temperature T, of fixed size emitted blackbody radiation (i.e., luminosity) $L_{\text{therm}} \propto T^4$ \rightarrow hot objects hugely luminous, but cold objects not \rightarrow if gas very *cold*, also very *dim*-too dim to see! \rightarrow so lack of IR or radio signal does not prove lack of cold gas Q: how else can we test for cold gas?

Atomic Absorption Lines

quantum mechanics of atoms: electrons can only occupy discrete orbits (radii) corresponding to discrete (quantized) energy levels www: Hydrogen levels

when atoms make *transitions between levels* only emit/absorb photons with energy $E_{\gamma} = hc/\lambda = E_{\text{final}} - E_{\text{initial}}$ *demo: emission tubes and diffraction gratings*

Q: in MW disk, effect on interstellar gas on nearby starlight? www: the data: spectrum of nearby 0 star

 $\stackrel{i}{\sim}$ Q: how can we use this to look for cold gas as DM?

So can use optical (or even UV) light from other galaxies

- passes through halo of host galaxy
- and through halo of our Galaxy
- if cold gas: should show up via absorption lines

but: no such lines seen ⇒ the *majority of dark matter is* not *cold gas*! mystery remains!

Lineup of Dark Matter Suspects

List is getting short!

¹/₄ Up soon: hot gas

Q: why isn't this ruled out by non-detection of absorption lines?