> Astro 406
> Lecture 21
> Oct. 14,2013

Announcements:

- Good news: no problem set this week Bad news: Midterm Exam in class Friday www: exam info
- ASTR 401: next draft due today
- guest cosmologist: Prof. Roger Blandford, Stanford U.

National Adademy of Sciences; chair of 2010 Decadal Survey of Astronomy \& Astrophysics Physics Colloquium 4pm Wednesday, Loomis 141
"The Accelerating Universe"
Last time: rotation curves of spiral galaxies
Q: why are these easier to measure than the MW curve?
, Q: the result? implications?
dark matter as cold gas
Q: what signature would it have? survey says?

Spiral Galaxy Rotation Revisited

For distant galaxies, can only get 21 cm with
low-resolution: no spatial map
but only all-galaxy V_{r} distribution

Q: V_{r} distribution for non-rotating galaxy?
$Q:$ for rotating edge-on galaxy $(i=p i / 2)$? inclination $i<\pi / 2$?
draw V_{r} distribution

The Tully-Fisher Relation

width of velocity profile: $W=2 V_{\max } \sin i$

Tully \& Fisher (1977):
faster $V_{\text {max }}$ for higher L
$L_{\text {red } / \text { IR }} \propto V_{\text {max }}^{\alpha}$, where index $\alpha \sim 4$

Q: what is significance of red/IR?

Q: implications?

Tully-Fisher relation: $L_{\text {red } / \mathrm{IR}} \propto V_{\text {max }}^{4}$
but red/IR light is dominated by red giant and main sequence stars

- i.e., long-lived, intermediate mass stars
- red/IR light sums the numbers and thus masses of these stars
- recall: low-mass stars comprise most of a galaxy's stellar mass and thus $L_{\text {red } / \text { IR }} \propto M_{\text {star }}$
\Rightarrow Tully-Fisher implies $M_{\star} \propto V_{\text {max }}^{4}$

Implications:

1. if TF always holds, can get L from $V_{\text {max }}$
then $D_{L}=\sqrt{L / 4 \pi F} \rightarrow$ distance measure!
2. Vmax traces flat part of rotation curve \rightarrow dark matter

TF \rightarrow mass of dark matter and stars is coupled somehow! both grow together as galaxies evolve

Disk Galaxies: Spiral Structure

spiral arms found in all disk galaxies with gas

Census of Spiral Galaxies:
$\sim 10 \%$ grand design: two well-defined arms (MW is one)
$\sim 60 \%$ multiple arm fragments
~30\% flocculent (no well-defined arms)
multiwavelength observations:
www: UV vs blue vs IR
Q: guesses why different?
hint: what is main UV source? IR source?
spiral arms prominent in UV, blue washed out/not evident in IR
arms are sites of new star formation
\Rightarrow can see in near-IR (old stars), but washed out
So: really represents a clumping of stars, but also formation of new bright ones (UV)

Arm motion: two possibilities

- leading $=$ tips point ahead
- trailing $=$ tips point behind
observe: real galaxies almost always trailing

A theory of spiral structure must explain
all of the above

iClicker Poll: The Galactic Racetrack

consider two Milky Way disk stars in circular orbits
the Sun at R_{0} and star Gaga at $R_{\text {Gaga }}=2 R_{0}$
the Sun's Galactocentric orbit period is $P_{0} \approx 200 \mathrm{Myr}$
the Galactocentric orbital period of Gaga is

A $\quad P_{\text {gaga }} \approx P_{0}$

B $\quad P_{\text {gaga }} \approx 2 P_{0}$

C $\quad P_{\text {gaga }} \approx P_{0} / 2$
\vee
D no way to determine Pgaga

The Winding Problem

flat galactic rotation curve: $V(R) \approx V_{0}$
$\rightarrow \Omega(R)=V(R) / R \propto 1 / R$
$\rightarrow P(R)=2 \pi / \Omega \propto R$
\rightarrow differential rotation
consider: linear disturbance at $t=0, \phi=0$
at each R, Galactic azimuth $\phi=\phi_{0}+\Omega(R) t$
when $t>0$:
$\Delta \phi_{+}<\Delta \phi_{0}<\Delta \phi_{-} \rightarrow$ spiral feature appears!
label center, V direction, ϕ, points R_{+}, R_{0}, R_{-} Q : is this leading or trailing?
${ }^{\infty}$ So far so good-but inconvenient detail swept under rug Q: any guesses?
winding timescale is fast
$t \sim P\left(R_{0}\right) \sim 200 \mathrm{Myr}$
\rightarrow after few Gyr, too tightly wound!
spiral arms overlap \rightarrow uniform disk
"winding problem"
differential rotation clearly relevant but "too much of a good thing"
\rightarrow need to "slow down" the effect
$Q:$ any guess as to the solution?

A Theory of Spiral Arms

Lin-Shu hypothesis (1964):
spiral pattern \neq fixed group of stars/gas
instead: a long-lived collective disturbance
\rightarrow spiral density wave
key idea:

- in simplified "zeroth order" disk picture
star motion is exactly circular, const angular speed:
$R(t)=R_{0} \rightarrow \dot{R}=0$
$\phi(t)=\phi_{0}+\Omega\left(R_{0}\right) t \rightarrow \dot{\phi}=\Omega$
\star but in realistic picture of disk disk potential \rightarrow radial forces
$\stackrel{\rightharpoonup}{\circ} \quad$ and star motion perturbed in radial direction
Q: if perturbations stable, how will motion (in R and ϕ) look?
can show that star motion is

*Factor of 2 here needed to make $\mathrm{N}=2$ spiral arms!
diagram circle epicycle, orbit $\phi_{\mathrm{gc}}(t)=\Omega\left(R_{0}\right) t$
star orbits in plane are really oval-shaped! approximately an ellipse
and: if ellipses at different r are aligned
\rightarrow get spiral pattern!
www: kinematic spiral pattern

Winding Problem Revisited

initially: at $t=0$, long axis points to $\phi=0$
later:

$$
\begin{aligned}
\delta r(t) & =r_{0} \cos \{\kappa t+2[\phi(t)-\Omega t]\} \\
& =r_{0} \cos \{(2 \Omega-\kappa) t-2 \phi \mathrm{gc}(t)\}
\end{aligned}
$$

long axis points to
$\phi=(\Omega-\kappa / 2) t \equiv \Omega_{p} t$
"pattern speed" of guiding circle vs epicycle
\rightarrow spiral pattern still winds, but now with at $\Omega_{p}<\Omega$
But: spiral arms influence gravity field
\rightarrow can have single Ω_{p} at all R
fixed pattern \rightarrow long-lived spiral arms
ongoing research problem: details still an open question!

Elliptical Galaxies

photometry

"isophotes" $=$ contours of constant I
elliptical shape:
"ellipticity" $\epsilon=1-b / a$
E type \#: $n=10 \epsilon=10(1-b / a)$

- EO: $n=0=\epsilon \rightarrow$ circular
- E5: $n=5$, so $\epsilon=1 / 2$ plotted at right

isophotes
surface brightness profile: $I(R) \propto e^{-b\left(R / R_{e}\right)^{1 / 4}}$
$R^{1 / 4}$ law: de Vaucoulers
find: ellipticals with higher $L_{\text {tot }}$
\rightarrow lower $I(0)$ central brightness
shape: can only see each galaxy in one projection analyze population of E
\rightarrow some triaxial Q : meaning? implications for orbits?

Star Orbits in Ellipticals

measure: absorption lines in elliptical's stars, and/or emission lines from its planetary nebulae
$\rightarrow v$ profile
\rightarrow some E's rotate, some don't
but not supported this way Q : which means?
instead: "gas" of stars with wide distribution of \vec{v} similar to state of globular clusters
\rightarrow E shapes \rightarrow orbit families

Q: properties of a star's orbit in spherical galaxy?
$\underset{\sim}{\forall} Q$: what if nonspherical but axisymmetric ("M\&M" shaped)?
spherical galaxies: recall globular cluster discussion

- each star's angular momentum \vec{L} conserved
- each star's orbit confined to a plane
- period to revisit turning points $\Delta T_{r} \in(1,2)$ Delta T_{θ}
\rightarrow rosette orbits
axisymmetric (M\&M) galaxies:
less symmetry in potential and in orbits
- use cylindrical coordinates (R, z, ϕ), with z the short axis
- rotational symmetry about $z \rightarrow L_{z}$ conserved torque $\dot{L}_{z}=m(\vec{r} \times \vec{g})_{z}=m r\left|\hat{r} \times g_{\phi}\right|=0$ because $g_{\phi}=0$ by symmetry
- orbits no longer confined to a plane
- but turning points still exist
www: orbit simulations for non-axisymmetric potentials

Ellipticals: Faber-Jackson Relation

Correlation observed ("Faber-Jackson relation"):
rms star speed $v_{\text {rms }}$ related to $L_{\text {tot }}$:
$L_{\text {tot }} \sim v_{\text {rms }}^{4}$
Q: reminiscent of anything?
Q: physical significance?

Dark Matter in Ellipticals?

Dark matter in E's:
harder to probe since no H I, 21 cm
can use star speeds, but Q : why of limited help?
other probes: planetary nebulae (emission lines)

Complication: orbits noncircular
Q: why does this complicate things?
often elongated, radial orbits
\rightarrow small line-of-slight speeds at large radii
diagram: top view, velocity vectors
balance of evidence: massive dark halos like spirals but case not as airtight

