Astro 406 Lecture 21 Oct. 14, 2013

Announcements:

- Good news: no problem set this week
 Bad news: Midterm Exam in class Friday
 www: exam info
- ASTR 401: next draft due today
- guest cosmologist: Prof. Roger Blandford, Stanford U.
 National Adademy of Sciences; chair of 2010 Decadal Survey of Astronomy & Astrophysics
 Physics Colloquium 4pm Wednesday, Loomis 141
 "The Accelerating Universe"

Last time: rotation curves of spiral galaxies *Q: why are these easier to measure than the MW curve? Q: the result? implications?* dark matter as cold gas *Q: what signature would it have? survey says?*

Spiral Galaxy Rotation Revisited

For distant galaxies, can only get 21 cm with low-resolution: no spatial map but only all-galaxy V_r distribution

Q: V_r distribution for non-rotating galaxy? *Q*: for rotating edge-on galaxy (i = pi/2)? inclination $i < \pi/2$?

draw V_r distribution

The Tully-Fisher Relation

```
width of velocity profile: W = 2V_{max} \sin i
```

Tully & Fisher (1977): faster V_{max} for higher L $L_{\text{red/IR}} \propto V_{\text{max}}^{\alpha}$, where index $\alpha \sim 4$

Q: what is significance of red/IR?

Q: implications?

Tully-Fisher relation: $L_{\rm red/IR} \propto V_{\rm max}^4$

but red/IR light is dominated by red giant and main sequence stars

- i.e., long-lived, intermediate mass stars
- red/IR light sums the numbers and thus masses of these stars
- \bullet recall: low-mass stars comprise most of a galaxy's stellar mass and thus $L_{\rm red/IR} \propto M_{\rm star}$
- \Rightarrow Tully-Fisher implies $M_{\star} \propto V_{\rm max}^4$

Implications:

1. if TF always holds, can get L from V_{max} then $D_L = \sqrt{L/4\pi F} \rightarrow$ distance measure!

2. V_{max} traces flat part of rotation curve \rightarrow dark matter TF \rightarrow mass of dark matter and stars is coupled somehow! both grow together as galaxies evolve

Disk Galaxies: Spiral Structure

spiral arms found in all disk galaxies with gas

Census of Spiral Galaxies:

 $\sim 10\%$ grand design: two well-defined arms (MW is one)

 \sim 60% multiple arm fragments

~ 30% flocculent (no well-defined arms)

multiwavelength observations:

www: UV vs blue vs IR

Q: guesses why different?

hint: what is main UV source? IR source?

С

```
spiral arms prominent in UV, blue washed out/not evident in IR
```

```
arms are sites of new star formation

\Rightarrow can see in near-IR (old stars), but washed out

So: really represents a clumping of stars, but also formation of

new bright ones (UV)
```

Arm motion: two possibilities

- *leading = tips point ahead*
- trailing = tips point behind
 observe: real galaxies almost always trailing

A theory of spiral structure must explain all of the above

σ

iClicker Poll: The Galactic Racetrack

consider two Milky Way disk stars in circular orbits the Sun at R_0 and star Gaga at $R_{Gaga} = 2R_0$ the Sun's Galactocentric orbit period is $P_0 \approx 200$ Myr

the Galactocentric orbital period of Gaga is

- **B** $P_{\text{gaga}} \approx 2P_0$
- C $P_{\text{gaga}} \approx P_0/2$

The Winding Problem

flat galactic rotation curve: $V(R) \approx V_0$

- $\rightarrow \Omega(R) = V(R)/R \propto 1/R$
- $\rightarrow P(R) = 2\pi/\Omega \propto R$
- \rightarrow differential rotation

consider: linear disturbance at t = 0, $\phi = 0$ at each R, Galactic azimuth $\phi = \phi_0 + \Omega(R)t$ when t > 0:

 $\Delta \phi_+ < \Delta \phi_0 < \Delta \phi_- \rightarrow$ spiral feature appears! label center, V direction, ϕ , points R_+, R_0, R_- Q: is this leading or trailing?

^{∞} So far so good-but inconvenient detail swept under rug *Q*: any guesses?

winding timescale is fast $t \sim P(R_0) \sim 200$ Myr \rightarrow after few Gyr, too tightly wound! spiral arms overlap \rightarrow uniform disk "winding problem"

differential rotation clearly relevant but "too much of a good thing" \rightarrow need to "slow down" the effect

Q: any guess as to the solution?

A Theory of Spiral Arms

Lin-Shu hypothesis (1964): spiral pattern \neq fixed group of stars/gas instead: a long-lived collective disturbance \rightarrow spiral density wave

key idea:

• in simplified "zeroth order" disk picture star motion is exactly circular, const angular speed: $R(t) = R_0 \rightarrow \dot{R} = 0$

$$\phi(t) = \phi_0 + \Omega(R_0)t \to \dot{\phi} = \Omega$$

★ but in realistic picture of disk disk potential \rightarrow radial forces

and star motion perturbed in radial direction Q: if perturbations stable, how will motion (in R and ϕ) look? can show that star motion is

$$R(t) = R_0 + \delta r(t)$$

$$= R_0 + r_0 \cos(\kappa t + 2^* \phi_{gc})$$

orbit = circle oscillation
"guiding center" "epicycle" (1)

*Factor of 2 here needed to make N=2 spiral arms! diagram circle epicycle, orbit $\phi_{gc}(t) = \Omega(R_0)t$

11

star orbits in plane are really oval-shaped!
 approximately an ellipse
 and: if ellipses at different r are aligned
 → get spiral pattern!
 www: kinematic spiral pattern

Winding Problem Revisited

initially: at t = 0, long axis points to $\phi = 0$

later:

12

$$\delta r(t) = r_0 \cos\{\kappa t + 2[\phi(t) - \Omega t]\}$$

= $r_0 \cos\{(2\Omega - \kappa)t - 2\phi_{gc}(t)\}$

long axis points to

 $\phi = (\Omega - \kappa/2)t \equiv \Omega_p t$

"pattern speed" of guiding circle vs epicycle

 \rightarrow spiral pattern still winds, but now with at $\Omega_p < \Omega$

```
But: spiral arms influence gravity field \rightarrow can have single \Omega_p at all R fixed pattern \rightarrow long-lived spiral arms
```

ongoing research problem: details still an open question!

Elliptical Galaxies

photometry

"isophotes" = contours of constant I

elliptical shape:

"ellipticity" $\epsilon = 1 - b/a$

- E type #: $n = 10\epsilon = 10(1 b/a)$
- E0: $n = 0 = \epsilon \rightarrow circular$
- E5: n = 5, so $\epsilon = 1/2$ plotted at right

surface brightness profile: $I(R) \propto e^{-b(R/R_e)^{1/4}}$ $R^{1/4}$ law: de Vaucoulers find: ellipticals with higher L_{tot} \rightarrow lower I(0) central brightness

shape: can only see each galaxy in one projection analyze population of E

 \rightarrow some triaxial Q: meaning? implications for orbits?

Star Orbits in Ellipticals

measure: absorption lines in elliptical's stars, and/or emission lines from its planetary nebulae $\rightarrow v$ profile \rightarrow some E's rotate, some don't but **not** supported this way *Q*: which means?

instead: "gas" of stars with wide distribution of \vec{v} similar to state of globular clusters

 \rightarrow E shapes \rightarrow orbit families

Q: properties of a star's orbit in spherical galaxy?

Q: what if nonspherical but axisymmetric ("M&M" shaped)?

spherical galaxies: recall globular cluster discussion

- each star's angular momentum \vec{L} conserved
- each star's orbit confined to a plane
- period to revisit turning points $\Delta T_r \in (1,2) DeltaT_{\theta}$ \rightarrow rosette orbits

axisymmetric (M&M) galaxies:

less symmetry in potential and in orbits

- use cylindrical coordinates (R, z, ϕ) , with z the short axis
- rotational symmetry about $z \rightarrow L_z$ conserved

torque $\dot{L}_z = m(\vec{r} \times \vec{g})_z = mr|\hat{r} \times g_{\phi}| = 0$ because $g_{\phi} = 0$ by symmetry

- orbits no longer confined to a plane
- but turning points still exist

www: orbit simulations for non-axisymmetric potentials

16

Ellipticals: Faber-Jackson Relation

Correlation observed ("Faber-Jackson relation"): rms star speed v_{rms} related to L_{tot} : $L_{tot} \sim v_{rms}^4$ Q: reminiscent of anything? Q: physical significance?

Dark Matter in Ellipticals?

Dark matter in E's: harder to probe since no H I, 21 cm can use star speeds, but *Q: why of limited help?* other probes: planetary nebulae (emission lines)

Complication: orbits noncircular *Q: why does this complicate things?* often elongated, radial orbits \rightarrow *small* line-of-slight speeds at large radii *diagram: top view, velocity vectors*

18

balance of evidence: massive dark halos like spirals but case not as airtight