Astro 406 Lecture 22 Oct. 16, 2013

Announcements:

- Good news: no problem set this week
 Bad news: Midterm Exam in class Friday
 www: exam info
- ASTR 401: next draft due next Monday
- Good news: No class next Monday Oct 21
- guest cosmologist: Prof. Roger Blandford, Stanford U.
 National Adademy of Sciences; chair of 2010 Decadal Survey of Astronomy & Astrophysics
 Physics Colloquium 4pm Wednesday, Loomis 141
 "The Accelerating Universe"

Last time: spiral galaxies

- Tully-Fisher relation $L_{red/IR} \propto V_{max}^4$ *Q: implications?*
 - spiral structure Q: origin?

Blandford Warmup: the High-Energy Universe

highest-energy particles found in nature: cosmic rays

review of energy scales

1 eV = 1.6×10^{-19} Joules: atomic binding, energy of e in atom 1 MeV = 10^6 eV: nuclear binding, energy of p, n in nucleus 0.511 MeV = $m_e c^2$: electron rest energy 1 GeV = 10^9 eV ~ $m_p c^2$: proton rest energy 1 TeV = 10^{12} eV: Fermilab beam (TeVatron) 7 TeV: CERN beam (LHC) ~ 10^{21} eV = 1 Zetta eV = 1 ZeV: highest observed $E_{\text{cosmic ray}}$

www: cosmic ray spectrum

N

www: ultra-high-energy cosmic ray event simulated

Blandford: what are the *ZeVatrons*?

 \rightarrow how does nature accelerate particles to these energies?

Elliptical Galaxies

photometry

"*isophotes*" = contours of constant *I*

elliptical shape: quantify via "*ellipticity*"

$$\epsilon = 1 - \frac{b}{a}$$

ellipcial type: $n = 10\epsilon$

- E0: $n = 0 = \epsilon \rightarrow circular$
- E5: n = 5, so $\epsilon = 1/2$

isophotes: E5 galaxy

surface brightness profile: $I(R) \propto e^{-b(R/R_e)^{1/4}}$ $R^{1/4}$ law: de Vaucoulers

observed ellipticals show *anticorrelation*: higher $L_{tot} \leftrightarrow lower I(0)$ central brightness

shape: can only see each galaxy in one projection *Q: what does this mean for ellipticity?*

analyze population of elliptical galaxies \rightarrow some triaxial Q: meaning? implications for orbits?

Star Orbits in Ellipticals

measure: absorption lines in elliptical's stars, and/or emission lines from its planetary nebulae $\rightarrow v$ profile \rightarrow some E's rotate, some don't but **not** supported this way *Q*: which means?

instead: "gas" of stars with wide distribution of \vec{v} similar to state of globular clusters

 \rightarrow E shapes \rightarrow orbit families

СЛ

Q: properties of a star's orbit in spherical galaxy? Q: what if nonspherical but axisymmetric (football or "M&M" shaped)?

spherical galaxies: recall globular cluster discussion

- \bullet each star's angular momentum \vec{L} conserved
- each star's orbit confined to a plane
- rosette orbits

axisymmetric (football or M&M) galaxies:

less symmetry in potential and in orbits

- use cylindrical coordinates (R, z, ϕ) , with z the short axis
- rotational symmetry about $z \to L_z$ conserved

torque $\dot{L}_z = m(\vec{r} \times \vec{g})_z = mr|\hat{r} \times g_{\phi}| = 0$ because $g_{\phi} = 0$ by symmetry

- orbits no longer confined to a plane
- but turning points still exist

```
www: orbit simulations for non-axisymmetric potentials
```

 Q: what about orbits triaxial galaxies—no rotational symmetry axis?

iClicker Poll: The Forbidden Center(?)

consider a star born with $\vec{L} = \vec{r} \times \vec{p} \neq 0$ and ignore the effect of collisions In which galaxies can the star never reach the center $\vec{r} = 0$? I. spherical II. axisymmetric III. triaxial

A I only

- B I and II
- C I, II, and III

Ellipticals: Faber-Jackson Relation

Correlation observed ("Faber-Jackson relation"): rms = root-mean-square star speed $v_{\rm rms} = \sqrt{\langle v^2 \rangle}$ related to luminosity $L_{\rm tot}$:

$$L_{\rm tot} \sim v_{\rm rms}^4$$
 (1)

Q: reminiscent of anything?

Q: physical significance?

Dark Matter in Ellipticals?

Dark matter in E's: harder to probe since no H I, 21 cm can use star speeds, but *Q: why of limited help?* other probes: planetary nebulae (emission lines)

Complication: orbits noncircular *Q: why does this complicate things?* often elongated, radial orbits \rightarrow *small* line-of-slight speeds at large radii *diagram: top view, velocity vectors*

Q

balance of evidence: massive dark halos like spirals but case not as airtight

Interacting Galaxies

recall: for each star $dE/dt = dKE/dt + dPE/dt = m \partial \Phi/\partial t$ isolated galaxy in equilibrium: $\partial \Phi/\partial t = 0$ during interaction: $\partial \Phi/\partial t \neq 0$

 \rightarrow star energy changes

key idea: galaxy global $KE \rightarrow$ stellar (random) KE

- Q: so what happens to star "gas"? "gas" of stars "heated"
 - *Q*: what happens to gal speeds?

Interactions: Hit and Run

net effect: impulse = transfer of momentum to m

- \bullet and so transfer of energy to m
- \bullet and so deflection, slowdown of M
- \Rightarrow galaxies slowed \rightarrow "dynamical friction"

recall virial theorem:

11

gravitating system virial equilibrium: (PE) = -2(KE)total energy: E = (KE) + (PE) = -(KE) = (PE)/2roughly: $E \sim -GM^2/2R$ Q: physical meaning of sign?

Q: effect of adding energy to galaxy in flyby?

initially: virial theorem says $E_i = (PE)_i/2 \sim -GM^2/2R_i$ negative energy: must add energy to get E = 0 (free state) system cannot spontaneously achieve free state \Rightarrow bound system

flyby adds energy, initially as kinetic energy then galaxy "virializes," re-achieves equilibrium

final energy $E_f = -GM^2/2R_f$ higher than initial:

$$E_f > E_i \tag{2}$$

and so $-1/R_f > -1/R_i$ and thus

$$R_f > R_i \tag{3}$$

[™] system expands, more loosely bound