Astro 406 Lecture 29 Nov. 4, 2013

Announcements:

- PS 9 due Friday
- Planetarium makeup due Wednesday
- Midterm Exam-exam and scores posted tonite exams returned next time

Last time: lifestyles in an expanding universe

- cosmic scale factor a(t)
 Q: what is it? present value? past, future values?
- redshifts *Q: origin?*
- "matter" definition for cosmologists?
- matter density versus *a*? evolution with time?

Н

Cosmic Density Evolution: Matter

matter for cosmo defined as *non-relativistic particles* $\rightarrow \langle v \rangle \ll c$, $kT \ll mc^2$

- if a non-relativistic species is not produced/destroyed Q: when would this assumption break down?
- number density $n_{\text{matter}} \propto a^{-3}$ (volume effect)
- mass density $\rho_{\text{matter}} = mn_{\text{matter}} \propto a^{-3}$ $\rho_{\text{matter}} = \rho_{\text{matter,0}} a^{-3}$

N

• energy density: each particle has $E_{tot} = E_{rest} + E_{kinetic} \approx mc^2 + mv^2/2 \approx mc^2$, so $\varepsilon_{non-rel} = E_{tot}n_{non-rel} \approx mc^2n_{non-rel} = \rho_{non-rel}c^2$

Cosmodynamics II

a(t) gives expansion history of the Universe which in turn tells how densities, temperatures change \rightarrow given a(t) can recover all of cosmic history!

but...

How do we know a(t)? What controls how scale factor a(t) grow with time? Q: what force(s) are at work? Q: how are the force(s) properly described?

ω

Cosmic Forces

- on microscale: particles scatter, collide
 via electromagnetic forces (also strong and weak forces)
 but no net charges or currents → no net forces
- pressure forces: manifestation of random velocities but pressure spatially uniform → *net* pressure force is *zero*!* Q: why uniform? why no net P force? (recall hydrostat eq)
 *See Director's Cut Extras; much more to come on cosmic pressure
- at large scales: only force is **gravity** *Q: what theory needed to describe this?*

Cosmodynamics Computed

cosmic dynamics is evolution of a system which is

- gravitating
- homogeneous
- isotropic

Complete, correct treatment: General Relativity solve Einstein's GR equations in homogeneous, isotropic Universe

```
\Rightarrow to see this, take GR!
```

quick 'n dirty:

Non-relativistic (Newtonian) cosmology

^{or} pro: gives intuition, and right answercon: involves some ad hoc assumptions only justified by GR

Inputs:

- arbitrary cosmic time t
- cosmic mass density is $\rho(t)$, spatially uniform Q: why?

Geometry:

pick an arbitrary point as origin $\vec{r} = 0$, enclose in arbitrary sphere of radius r(t):

enclosed mass $M(r) = 4\pi/3 r^3 \rho = const$ a point on the sphere feels acceleration *Q*: what is \ddot{r} ?

a point on the sphere feels acceleration

$$\ddot{r} = g = -\frac{GM(r)}{r^2} = -\frac{4\pi}{3}G\rho r$$
 (1)

Q: why the - sign?

now introduce expansion technology:

- put $r(t) = a(t)r_0$
- for non-relativistic matter: $\rho = \rho_0 a^{-3}$, so

$$\ddot{a} = -\frac{4\pi}{3}G\rho_0 \ a^{-2} = -\frac{4\pi}{3}G\rho \ a \tag{2}$$

iClicker Poll: Pressureless Cosmic Matter Domination

in a pressureless, matter-only universe

$$\ddot{a} = -\frac{4\pi}{3}G\rho \ a \tag{3}$$

How must a matter-only universe evolve?

- A it always expands
- B it always contracts
- C it always remains still or static
- $^{\infty}$ D it can be static, but only for an instant

a pressureless universe has acceleration

$$\ddot{a} = -\frac{4\pi}{3} G\rho_0 \,\frac{1}{a^2} \tag{4}$$

formally identical to $\ddot{r} = -GM_{earth}/r^2$

 \rightarrow motion of a *pop fly*: ball launched vertically

i.e., a ball moving upward in a radial orbit

scale factor a	\Leftrightarrow	ball height <i>r</i>
cosmic expansion rate $H = \dot{a}/a$	\Leftrightarrow	ball upward speed $v=\dot{r}$

pop fly: $\ddot{r} < 0$

Q: implications for pressureless, matter-only universe?

The Pop Fly Universe

pressureless, matter-only universe: behavior very closely analogous to pop fly

pressureless, matter-only universe: $\ddot{a} = d\dot{a}/dt < 0$:

- cosmic expansion "speed" \dot{a} always changing unless $\rho = 0...$
- expansion is *decelerated*

fate of this universe is result of competition:

gravity vs inertia

- *if gravity wins*, H = 0 instantaneously at max expand then *recollapse*, at ever greater rate
- *if inertia wins H* decreases, but *expand forever*

10

Why expansion?

the pop fly analogy is a very close one and gives intuition that helps frame questions

such as: *initial conditions* in the pop fly case, the *launch upwards* sets the stage for the subsequent motion, and is non-gravitational: David Ortiz's bat, or perhaps a rocket

we found:

$$\ddot{a} = -\frac{4\pi}{3} G\rho_0 \ a^{-2} \tag{5}$$

multiply by \dot{a} and integrate:

$$\dot{a} \frac{d}{dt} \dot{a} = -\frac{4\pi}{3} G \rho_0 \frac{\dot{a}}{a^2} \tag{6}$$

$$\dot{a} d\dot{a} = -\frac{4\pi}{3} G \rho_0 \frac{da}{a^2}$$
 (7)

$$\frac{1}{2}\dot{a}^2 = \frac{4\pi G\rho_0}{3} + K \tag{8}$$

$$= \frac{4\pi}{3}G\rho a^2 + K \tag{9}$$

Q: look familiar?

this is an expression for \dot{a} $\stackrel{t}{\sim}$ Q: physical significance?

The Friedmann Equation: I

recall that expansion rate $H = \dot{a}/a$

thus we can recast our cosmic "energy" equation: $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{K}{a^{2}}$ the **Friedmann equation**

Awesome!

- gives expression for expansion rate
 but need to know how ρ depends on a
 → the expansion of the Universe depends on what's in it!
- predicts cosmic past and future! *Q: how?*

Solving Friedmann: Matter Domination

important simple case: *matter-dominated universe*

- $\rho = \rho_{\text{matter}}$, dark matter included
- K = 0 (really: ρ term $\gg K$ term)

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho \propto a^{-3}$$
(10)

$$\frac{a}{a} \propto a^{-3/2} \tag{11}$$

$$a^{1/2}da \propto dt$$
 (12)

integrate to find

$$a^{3/2} \propto t$$
 (13)

$$a \propto t^{2/3}$$
 (14)

14

this is huge! awesome! Q: why?

matter-only Friedmann $\rightarrow a \propto t^{2/3}$

but we set $a(t_0) = 1$, so then

 $a_{\rm mat-dom}(t) = (t/t_0)^{2/3}$

Huge! Gives history of (matter-dominated) universe!

Q: what does a plot of a(t) look like? Q: what it noteworthy about the a(t) solution? Q: what does it imply physically?

A Matter-Only Universe

 $a(t) = (t/t_0)^{2/3}$

16

in this model: can relate *z* and *t*:

$$z(t) = \frac{1}{a(t)} - 1 = \left(\frac{t}{t_0}\right)^{-2/3} - 1 \tag{15}$$

•
$$t = t_0/2$$
 at $z = 2^{2/3} - 1 = 0.6$

• most distant QSO: $z \approx 7$ corresponds to $t = t_0/8^{3/2} = 0.044 t_0$ "lookback time" is 96% of age of U

but remember-these values only hold for matter-only universe

Q: what about Hubble parameter H(t) in this universe??

$$a(t) = (t/t_0)^{2/3}$$

in this model: can find expansion rate

$$H(t) = \frac{\dot{a}}{a} = \frac{2}{3} \frac{1}{t}$$
(16)

we see Hubble "constant" changes with time

Q: what is behavior of *H* over time?

- Q: what does this imply for evolution of the U?
- *Q*: what does this mean physically?

expansion rate $H(t) \propto 1/t$: expansion slowing \rightarrow U. decelerating (i.e., $\ddot{a} < 0$) gals: outward momentum opposed by inward gravity

Note:

Matter-only has

$$H_{0} = \frac{21}{3t_{0}}$$
(17)
$$t_{0} = \frac{21}{3H_{0}} = \frac{2}{3}t_{\text{Hubble}}$$
(18)

predict t_0 from H_0 : "expansion age"

 \mathbb{Q} : how can we use this connection to test cosmology?

Carding the Universe: Does the Age Check Out?

In any cosmo model: H_0 and t_0 related but we can measure **both** values **independently** \rightarrow see if connection holds up

Since we know

$$H_0 = 72 \text{ km sec}^{-1} \text{ Mpc}^{-1}$$
 (19)

we can solve for the "Hubble time"

 $t_{\text{Hub}} = 13.8 \text{ billion years} = 13.8 \text{ Gyr}$ (20)

for matter-only universe: expansion age $t_0 = \frac{2}{3}t_{Hub} = 9.1$ Gyr

Oldest star (globular clusters) ages: $t_{\star} \sim 12-14$ Gyr, and $t_{\star} > 11.2$ Gyr

thus we observe: $\frac{H_0 t_0}{Q} > 0.81$ and thus $\neq 2/3$ Q: what's going on?

Pressure and Cosmic Evolution

in perfectly homogeneous universe, no pressure differences \rightarrow the usual pressure forces vanish

but recall an ideal gas: $P = nkT = 2n\langle KE \rangle/3$ \rightarrow pressure \propto kinetic energy density and since $E = mc^2 \rightarrow$ all energy sources contribute to total energy density ε_{tot} and thus to equivalent mass density $\rho = \varepsilon_{tot}/c^2$

non-relativistic matter: $\varepsilon_{tot} \approx nmc^2$ P = 0; or really, take $P \ll nmc^2$ ideal gas: P = nkT, so $P/nmc^2 = kT/mc^2 \ll 1$

^N for *relativistic* particles, $\varepsilon_{tot} \gg nmc^2$ P/ε_{tot} not small