Astro 406 Lecture 30 Nov. 6, 2013

Announcements:

 \vdash

- PS 9 due Friday
- Planetarium makeup due Wednesday

Last time: began cosmic dynamics physical intuition: Pop fly analogy Q: why and how is the Universe like a pop fly? a matter-only, pressureless universe, K = 0 universe Q: why is this not crazy? Q: a(t)? fate? H(t)? a matter-only, pressureless universe has acceleration

$$\ddot{a} = -\frac{4\pi}{3} G\rho_0 \,\frac{1}{a^2} \tag{1}$$

formally identical to $\ddot{r} = -GM_{earth}/r^2$

 \rightarrow motion of a *pop fly*: ball launched vertically

in a matter-only, pressureless universe with K = 0

$$a(t) = \left(\frac{t}{t_0}\right)^{2/3} \tag{2}$$

- fate: in the far future, as $t \to \infty$ $a \to \infty$! expands forever!
- expansion rate H(t) = 2/3t: not constant

H
ightarrow 0 as $t
ightarrow \infty$

Ν

Carding the Universe: Does the Age Check Out?

In any cosmo model: H_0 and t_0 related but we can measure **both** values **independently** \rightarrow see if connection holds up

Since we know

$$H_0 = 72 \text{ km sec}^{-1} \text{ Mpc}^{-1}$$
 (3)

we can solve for the "Hubble time"

 $t_{\text{Hub}} = 13.8 \text{ billion years} = 13.8 \text{ Gyr}$ (4)

for matter-only universe: expansion age $t_0 = \frac{2}{3}t_{Hub} = 9.1$ Gyr

Oldest star (globular clusters) ages: $t_{\star} \sim 12 - 14$ Gyr, and $t_{\star} > 11.2$ Gyr thus we observe: $H_0 t_0 > 0.81$ and thus $\neq 2/3$

Q: what's going on?

ŝ

Cosmic Fail: What is to be Done?

we found: matter-only, pressureless, K = 0 universe does not agree with observations of cosmic age

- \rightarrow *this model ruled out!* not our universe!
- \rightarrow need to change the model

recall: derivation was (quasi)-Newtonian, non-relativistic but we know the correct description must include

- special relativity, and
- general relativity

fortunately, much stays the same

 $_{P}$ but we get a deeper understanding

Cosmic Density Evolution: Radiation

radiation by definition: relativistic particles

- $\rightarrow v \sim c$, $kT \gg mc^2$
 - *Q:* examples? what particles are relativistic today?

if not emitted/absorbed

- *Q:* how does number density n_{rad} depend on *a*?
- *Q:* how does single-particle E_{tot} depend on *a*-think photons?
- *Q:* how does energy density ε_{rad} depend on *a*?

radiation (relativistic $\rightarrow v \sim c, kT \gg mc^2$)

example-photons: $m_{\gamma} = 0$ and $v = c \Rightarrow$ always relativistic electrons: $m_e \neq 0 \Rightarrow$ relativistic at $T \gtrsim m_e c^2/k \sim 10^{10}$ K neutrinos: $m_{\nu} \neq 0$, but small \Rightarrow maybe relativistic today? certainly relativistic in the hot early universe

number density: if not created/destroyed (i.e., conserved) then same "volume dilution" result holds: $n_{\rm rad} \propto a^{-3}$

energy density $\varepsilon_{\gamma} = \langle E_{\gamma} \rangle n_{\gamma}$ ex: photons have $m_{\gamma} = 0$, but $E_{\gamma} \neq 0$ but $\langle E_{\gamma} \rangle \propto 1/a$ $\rightarrow \varepsilon_{\gamma} \propto a^{-4}$ and so $\varepsilon_{\gamma} \propto T^{4}$ if thermal: Planck result! $\rho_{rad} = \varepsilon_{rad}/c^{2} \propto a^{-4}$

pressure EM theory says $P_{\gamma} = \varepsilon_{\gamma}/3$ holds generally for radiation: $P_{rad} = \varepsilon_{rad}/3$

σ

The Friedmann Equation Revisited

Einstein 1917: first cosmological solutions in General Relativity but for *non-expanding*, static universe (PS9) thanks to "fudge factor" Λ

first solution for expanding universe: Alexander Friedmann (1924) ignored Λ , but otherwise very general, allowing for:

- matter and energy density of any kind total cosmic mass density $\rho = \varepsilon_{tot}/c^2$ where $\varepsilon_{tot} = \varepsilon_{matter} + \varepsilon_{rad} + \dots$
- pressure of any kind

~

 $P_{\text{tot}} = P_{\text{matter}} + P_{\text{rad}} + \dots$

Friedmann acceleration equation:

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\left(\rho + \frac{3P}{c^2}\right) \tag{5}$$

iClicker Poll: Relativistic Cosmodyanmics

Friedmann acceleration equation:

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\left(\rho + \frac{3P}{c^2}\right) \tag{6}$$

consider universes with both *matter* and *radiation*

Based on Friedmann, wow will such universes evolve with time?

- A always decelerate, may or may not recollapse
- B always decelerate, must recollapse
- C always accelerate, may or may not recollapse
- D always accelerate, must expand forever
- E none of the above

 ∞

Friedmann says:

$$\ddot{a}a = -\frac{4\pi}{3}G\left(\rho + \frac{3P}{c^2}\right) \tag{7}$$

but $\rho > 0$ always: no negative mass! and both matter and radiation have $P \ge 0$

thus $\rho + 3P/c^2 > 0$ for arbitrary matter and radiation and thus $\ddot{a} < 0$: these universes *decelerate*

but pop fly intuition tells us: final fate not determined by this equation alone depends on gravity vs inertia \rightarrow total energy

ဖ

The Friedmann Equation Revisited

Friedmann equation for relativistic cosmic "energy" :

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\kappa c^2}{R_0^2 a^2}$$

• "energy" equation stays formally the same!

• *P* does not appear!

"total energy" constant now has become

$$K = \frac{\kappa c^2}{R_0^2}$$

(8)

where

- c is speed of light
- R_0 a lengthscale
 - $\kappa = \pm 1, 0$ records sign of "total energy"

Relativistic Cosmology

So far: quick-n-dirty Newtonian derivation grafted scale factor onto non-relativistic gravity got the right basic answer, but *ad hoc* approach

Correct, self-consistent solution:

relativistic gravity, i.e., General Relativity

- \star dynamic spacetime a natural, built-in feature
- ★ curved spacetime automatically built-in
- \star scale factor emerges automatically
- \star redshifts, time dilation, other effects automatic
- \star can naturally, correctly include relativistic matter, $P \neq 0$

Now can interpret parameters:

- $\stackrel{:}{\sim}$ R_0 lengthscale: spatial curvature of Universe
 - $\kappa = +1$, 0, or -1: encodes **cosmic geometry**

Geometry of the Universe

cosmic *geometry* ("*curvature*") \Leftrightarrow Friedmann eq. κ 3 possible spatial geometries \Leftrightarrow three values for κ choice fixed once and for all

 \rightarrow experimental question: which describes our universe?

 $\kappa = 0$ no curvature: space Euclidean or "flat" Δ angle sum = 180°, circle $A = \pi r^2$ total spatial volume = ∞

 $\kappa = +1$ positive curvature: space is "sphere-like" triangle angles sum > 180°, circle $A < \pi r^2$ volume finite

 $\kappa = -1$ negative curvature; "like a saddle" or hyperbolic Δ angle sum < 180°, circle $A > \pi r^2$ volume = ∞

Dr. Friedmann's Amazing Equation

fundamental equation of Cosmology!

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R_{0}^{2}a^{2}}$$
(9)

predicts cosmic past and future!

Output:

• solving Friedmann gives a(t) for all time

Input:

- Friedmann calls for particular properties of universe
- Q: Namely, what info needed to solve for a(t)?

Solving Friedmann

Friedmann sez

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\kappa c^2}{R_0^2 a^2} \tag{10}$$

i.e., evolution of the Universe (i.e., of a) depends on what's in the universe

Namely, need to know:

1. cosmic mass (mass-energy) density ρ and $\rho(a)$ dependence

2. Need cosmic parameters (fixed numbers)

- R_0 : curvature scale of the U.
- $\kappa = \pm 1, 0$: cosmic geometry

Cosmic Epochs

Cosmic density ρ is sum of all cosmic constituents

- matter is present for sure (both dark, baryonic)
- radiation present for sure Q: in what form(s)?

So at minimum, realistic universe has

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3} (\rho_{m,0}a^{-3} + \rho_{rad,0}a^{-4}) - \frac{\kappa c^2}{R_0^2}a^{-2}$$
(11)

Q: which term most important at early times? Q: which term most important at late times? Q: sequence of events?

diagram: $\log H^2 vs \log a$

 \Rightarrow 3 major epochs

Cosmic choreography: sequence fixed

- Radiation dominated: early U \rightarrow small $a \rightarrow \rho_{rad} \propto a^{-4}$ largest term in H
- Matter dominated: $\rho_{matter} \propto a^{-3}$ drops less rapidly than radiation \rightarrow dominates eventually
- Curvature dominated (if $\kappa \neq 0$): a^{-2} smallest dropoff \rightarrow dominates at late times

Rewrite Friedmann:

at any time

$$\kappa \frac{c^2}{R_0^2 a^2 H^2} = \frac{\rho}{3H^2/8\pi G} - 1 \tag{12}$$

and so for *today*:

$$\kappa \frac{c^2}{R_0^2 H_0^2} = \frac{\rho_0}{3H_0^2/8\pi G} - 1 \tag{13}$$

So what?

- Q: what if right-hand-side = 0? < 0? > 0?
- *Q: in practice, what is good about right-hand-side?*
- Q: what measurable number(s) do we need to know?

Rewrite:

$$\kappa \frac{c^2}{R_0^2 a^2 H^2} = \frac{\rho}{3H^2/8\pi G} - 1 \equiv \Omega - 1 \tag{14}$$

Define critical density

$$\rho_{\rm crit} = \frac{3H^2}{8\pi G} \stackrel{\rm today}{=} \frac{3H_0^2}{8\pi G}$$
(15)

Define: dimensionless density parameter

$$\Omega = \frac{\rho}{\rho_{\rm crit}} \tag{16}$$

 \star since we know $\kappa=+1,-1,$ or 0, then

 $\stackrel{\text{\tiny to}}{\sim} \star \Omega \Leftrightarrow \kappa \Leftrightarrow \text{cosmic geometry!}$

Midterm Exam

Not for the fainthearted

I was generally pleased with how people rose to the challenge

average: 106.7 out of 120 median: 111 out of 120 standard deviation: 14

recall:

exam is worth the same as 2 Problem Sets

- if you're pleased, congrats! but still work hard on the PS
- if you had a bad day, don't let it go to your head, work hard on PS