Astro 406 Lecture 34 Nov. 15, 2013

Announcements:

 \vdash

- PS 10 due now
- PS 11 due next Friday penultimate problem set!
- ASTR 401: make appointment to meet

Last time: our future in an accelerating universe fun fact: if acceleration continues photons "have trouble catching up" with galaxies \rightarrow only travel a finite comoving distance as $t \rightarrow \infty$ \rightarrow we will only ever see a finite portion of the cosmos!

Today and the rest of the course: the past

A Puzzling Measurement in the Mad Men Era

Spring 1965:

- Rev. Martin Luther King Jr leads march on Selma AL
- Beatles play Shea Stadium
- first successful launch of unmanned Saturn I rocket nine Apollo Saturn V rockets went to the Moon 1968–1972
- astronomers Arno Penzias & Robert Wilson
 were using radio telescope to study interstellar gas clouds
 www: Penzias and Wilson at Bell Labs

made careful measurements, noticed that when pointing radio telescope ("horn") away from clouds signal readout dropped, but did *not* go to zero no matter where pointing "off source"

Ν

Q: what are possible explanations?

What is all this noise?

Bell Labs radio telescope reads out nonzero signal even when pointed away from any sources

Possibilities:

Problem with telescope?

• instrumental noise?

Penzias & Wilson carefully checked system characterized noise-too small to explain signal

 contamination/damage to antenna? scraped off pigeon droppings

Result: after careful checking

 $^{\omega}$ Penzias & Wilson could not explain away signal → forced to conclude: Signal is real!

Penzias & Wilson reported their result in 2-page scientific paper www: their paper devoted to showing how they checked antenna noise and which made *no attempt to interpret signal*

mysterious radio signal properties:

- **isotropic** (as far as they could measure)
- **unpolarized** (as far as they could measure)
- **unchanging with seasons** *Q*: which implies what?
- measured at $\nu = 4080$ MHz or $\lambda = c/\nu = 7.35$ cm with "antenna temperature" $T_{ant} = 3.5 \pm 1$ K Q: how do they know the radiation is thermal?
- $_{P}$ Q: what other properties of signal would be useful to measure?

Mysterious Radio Signal

mystery signal does not change with seasons \rightarrow not related to Earth, or solar system \rightarrow comes from our Galaxy or beyond

in fact: all other know sources of radiation observed to lie *in front* of this mystery signal

- signal comes from great distance: cosmic
- signal is **background** to all else

antenna temperature: really intensity or surface brightness T_{ant} gives temperature a blackbody would need to give observed intensity I_{ν} at ν

- $^{\sigma}~\rightarrow$ always possible to define for any signal
 - \rightarrow does not necessarily mean the observed signal is thermal

essential to measure *spectrum* quickly done, found to have *blackbody* form!

peak around $\lambda_{max} \approx 1$ cm: **microwave** which corresponds to temperature $T \approx 3$ K

Q: *is this hot or cold*?

Q: what does this all mean?

Note: the strict empiricism in 2-page P&W writeup:

- none of the words "cosmology," "universe," or "background" appear in any form
- not even any direct claim that the signal is extraterrestrial!

Entire P&W interpretive discussion follows:

A possible explanation for the observed excess noise temperature is the one given by Dicke, Peebles, Roll, and Wilkinson (1965) in a companion letter...

...which is entitled "Cosmic Black-body Radiation"

1

Cosmic Microwave Background Radiation

mystery signal: cosmic microwave background radiation = **CMB** Universe today filled with radiation

- isotropic had to be! confirms cosmological principle!
- blackbody = thermal

the universe has a temperature

CMB temperature: present measurement

$$T_0 = 2.725 \pm 0.001 \text{ K} \tag{1}$$

note precision!

cosmic temperature known to within better than 0.05%!

spectrum: blackbody www: CMB spectrum (FIRAS)
purely thermal (so far): www: CMB spectrum residuals

00

Q: what do we learn from the thermal nature of the radiation? *Q*: what do we learn from the fact that T_0 is so chilly?

The CMB Demands a Hot Big Bang

observe *thermal* (Planck) CMB spectrum today

thermal systems have come into *equilibrium* which has occured due to interactions that exchange energy and momentum

Conclude:

Cosmic matter & radiation once in "good thermal contact"

- \rightarrow but this requires much higher T , ρ than seen today
- → CMB demands Universe went through *hot*, *dense* early phase
- \Rightarrow CMB \rightarrow hot big bang

ဖ

The Physics of the Isotropic CMB

We want to understand:

- what physics leads to the CMB?
- what cosmic epoch(s) does the CMB probe? when was this thermodynamic equilibrium established

To start, note that the *present* universe must be *transparent* to the CMB *Q: why is this?*

Q: what does this imply about epoch probed by CMB?

The CMB as a Scattering Problem

recall: *any* observed photon has this life cycle:

- emission
- scattering (possibly none, possibly many times)
- absorption (i.e., detection)

thus: any detected = absorbed photon
points back to emission or most recent scattering event
e.g., daytime sky: Sun's emission disk vs off-source scattered blue light

the fact that the CMB is a *background* to low-z objects \rightarrow late-time U. is *transparent* to CMB

thus: the CMB probes exactly the epoch

□ when the universe was last able to scatter photons
i.e., the last time U. was *opaque* to its thermal photons

CMB as Cosmic "Baby Picture": Last Scattering Surface

CMB created by (and gives info about) epoch of cosmic transition: $opaque \rightarrow transparent$

but transparent/opaque transition is controlled by photon scattering e.g., CMB released at epoch of "last scattering" z_{ls} → CMB sky map is a picture of the U. then: "surface of last scattering"

the question becomes: when did last scattering occur?

The Early Universe

We know something about the future now turn back to past

our procedure: run the movie backwards given present contents of U, how would it have acted in the past?

Q: present contents?

Q: how would they act in early U?

Looking Back

Observed facts:

the Universe today composed of:

- \bullet photon radiation: blackbody, $T\sim {\rm 3~K}$
- normal matter: mostly H and He
- dark matter: weakly interacting Q: why?
- dark energy: constant density (?)

in past: $a \ll 1$

- $T \propto 1/a$: universe *hotter*
- radiation $\rho_{\rm rad} \propto a^{-4}$, matter $\rho_{\rm m} \propto a^{-3}$: denser
- dark energy unimportant (?) Q: why?

14

Cosmic Ingredients in the Past: Recipes for the Present

normal matter: well studied in the lab! known properties for different ρ , T \rightarrow use known physics to deduce cosmic history of matter and radiation!

For starters:

Q: What is ordinary cosmic matter mostly made of today?

Q: how does the CMB interact with it?

Hydrogen History

ordinary matter (i.e., made of atoms): mostly hydrogen

today: universe cold, H is in neutral *atomic* form

H atoms: quantum orbits and energy levels state $n \in 1, 2, 3, ...$ has energy

$$E_n = -\frac{E_1}{n^2} = -\frac{13.6 \text{ eV}}{n^2} \tag{2}$$

ground state: $E_1 = -13.6 \text{ eV}$ negative? yes! must supply 13.6 eV to unbind the atom \rightarrow binding energy is $B_{\text{H}} = 13.6 \text{ eV}$ photons absorbed by H only when E_{γ} is same as energy level difference

otherwise, H atoms *transparent* to photons ...just like the gas in the room is transparent to light

today: most of the U is transparent to H

Q: when would this have been very different?

The Atomic Age

laboratory atomic physics: hydrogen binding $B_{\rm H} = 13.6 \ {\rm eV}$

So: matter with $kT < few \text{ eV} (T < 10^4 \text{ K})$ \Rightarrow electrons bound to nuclei: atoms! i.e., electrically neutral gas particles

```
but if kT > few \text{ eV}
free e^-, nuclei
ionized "plasma" of charged particles
www: laboratory hydrogen plasma
```

So: early Universe $kT \gg 1$ eV ionized but as cooled, became neutral epoch of (re)combination

iClicker Poll: Illuminating a Flame

Experiement: shine projector light through a flame

How will flame appear on the screen?

- A brighter than the rest of the screen
- B dimmer than the rest of the screen
- C same brightness as the rest of the screen

