Astro 406 Lecture 35 Nov. 18, 2013

Announcements:

• **PS 11 due Friday** penultimate problem set!

Last time: cosmic microwave background radiation

- Q: observed properties? what do they tell us?
- Q: where do CMB photons point back to?
- cosmic recombination
- Q: who? what? when? where?

 \vdash

cosmic microwave background: **CMB**

observed properties

- angular distribution: (almost) perfectly isotropic radiation
- spectrum: thermal = Planck form, T = 2.725 K

implications

- isotropy: validates cosmological principle
- Planck spectrum: U once in *thermodynamic equilibrium* \Rightarrow matter & radiation was once hot and dense enough to exchange energy and come into equilibrium the early Universe was a hot, dense state: big bang

cosmic (re)combination

- at high $T \gg B_{\rm H}$ hydrogen binding, atoms *ionized* into nuclei and electrons
- N
- Universeexpanded, cooled: density & T dropped
- atoms formed: $p + e \rightarrow H$

The Physics of Cosmic Recombination

Procedure: follow physics of expanding, cooling H gas going from ionized \rightarrow neutral

ask: what observable traces ("fossils")
would this leave behind and remain today?
("cosmic archaeology")

Q: guesses as to what fossils might remain?

A Photon's Life

take the viewpoint of "Fabio the photon"

when U. ionized: γ_{Fabio} "sees" free e^- , nuclei can **scatter** off both but e^- lower mass, same amount of charge \rightarrow more important

 $\gamma + e^- \rightarrow \gamma + e^-$: Thomson scattering

think of photon as EM wave = oscillating E field

• E field shakes e^-

4

- accelerating e^- re-radiates
- Q: photons of which energy (frequency) are scattered?
- *Q: energy of scattered/re-radiated photons?*
- Q: effect of scatterings on photon spectrum? isotropy?

Thomson scattering: nonrelativistic, classical view

- incoming radiation with frequency ν classically has $\vec{\mathcal{E}}$ field oscillating with ν
- \bullet field ''shakes'' e^- with same frequency $\nu,$ if $v \ll c$
- accelerated e^- radiates: is like "little antenna"
- \bullet emitted radiation is at same frequency ν
- scattered photon directions random, but preferentially in plane of original radiation

Scattering effect on radiation:

СЛ

- frequency and thus energy unchanged
 - \rightarrow pre-scattering spectrum preserved!
- scattered directions retain "memory" of initial directions but if initial photon field is isotropic scattered radiation also isotropic
- CMB thermal and isotropic character reflects thermal and isotropic conditions in early universe!

The Birth of Atoms

```
when Universe ionized:
▷ all γs scattered vigorously
▷ Universe opaque, a "cosmic fog" of photons
```

now let the U. recombine

σ

$$p + e \to \mathsf{H} + \gamma \tag{1}$$

how does this story change when U. neutral? Q: what energies/wavelengths/freqs can be absorbed by atoms? recall: in hydrogen atoms $E_n = -13.6/n^2$ eV $\rightarrow E_n = E_1 + 13.6(1 - 1/n^2)$ eV Q: when T < 1 eV, what level(s) occupied in H? Q: implications?

Thermal Photons After Recombination

when U. neutral: atoms only absorb γ at characteristic Es (lines) \rightarrow atoms only interact with photons having enough energy to promote e^-s

but in hydrogen, $E_n = -13.6/n^2 \text{ eV}$ \rightarrow ground state $E_1 = -13.6 \text{ eV}$ if kT < 1 eV, H can't access excited states:

$$E_2 = E_1 + 10.2 \text{ eV} \tag{2}$$

 \rightarrow first excited state at $E_2 - E_1 \gg kT \simeq E_\gamma$

 \rightarrow cosmic photons too feeble to raise H out of ground state!

So: in neutral universe

atoms transparent to cosmic γ s! thermal photons "see" nothing! \Rightarrow CMB photons travel freely

The Cosmic Fog Clears

So: When $T \gtrsim 1$ eV:

- U. ionized
- free e^- constantly scatter cosmic photons

```
When T \lesssim 1 eV:
```

• U. neutral

00

• bound atoms "invisible" to cosmic photons

```
That is: ionized \rightarrow neutral transition
also opaque \rightarrow transparent
```

When did this happen?

Again: take photon's (Fabio's) point of view

Q: what physically controls opaque/transparent? Q: how to quantify this?

When Exactly was Recombination?

Key effect: photon scattering off free $e^$ quantify by scattering rate: $\Gamma_{scatter} = \#$ scatterings/sec

 $\Rightarrow \tau_{scatter} \equiv 1/\Gamma_{scatter} = \# sec/scatter = "mean free time"$

Scattering depends on free e^- density n_e

- expansion: $n_e \propto a^{-3} = (1+z)^3$
- atomic physics: $n_e \propto e^{-13.6}~{\rm eV}/kT$

Q: behavior at $T \gg 13.6 \text{ eV}$? $T \ll 13.6 \text{ eV}$?

Q: quantitative condition for opaque/transparent?

_o Q: Hint–when does scattering become rare?

Freezeout and Last Scattering

```
When does scattering stop?
When it takes "forever" to occur!
i.e., when mean time \tau_{scatter} between scatterings
has \tau_{scatter} > age of U. = t
\rightarrow scattering "shut down" after \Gamma t = \# future scatterings < 1
\rightarrow when \Gamma t = 1 time of "last scattering"
```

"freezeout" of photon interactions with matter

Note: Freezeouts are key cosmological events:

- departures from equilibrium
- can leave behind observable "fossils"

Cosmic Recombination Quantified

```
first pass: atomic physics alone

\rightarrow e^{-13.6 \text{ eV}/kT} factor only

no cosmology added-no expansion

kT \sim 1 \text{ eV} at z \sim few \times 1000
```

```
full treatment: follow freezeout
detailed calculation in cosmological environment:
z_{recomb} \simeq 1100
at t \approx 400,000 yrs
```

photon life since recomb:

 \Box Q: what happens? What doesn't happen?

Recombination and Photons: Summary

For blackbody photons, recombination marks:

- last time a typical photon, $E_{\gamma} \sim kT$, could interact with matter
- "freezeout of electromagnetic interactions"

Since recombination:

- photons (mostly) unscattered: "fossils"
- travel freely in straight lines
- can and do redshift
- observable today!

cosmic microwave background (CMB)

12

iClicker Poll: The CMB Forever?

Today we observe CMB photons that have travelled unscattered since recombination

Will there ever be a time when we can't see the CMB?

CMB: What Does an Observer See?

pre-recombination: γ s scattered observer sees only nearby sources

post recomb, $t > t_{recomb}$: thermal photons travel freely, redshift

- Q: which photons seen at t (where/when emitted)?
- *Q*: what happened to the photons that were here at t_{recomb} ?
- *Q*: who can see "our" photons now, and where are these observers?
- *Q: are there any times* t *when we* cannot *see any thermal pho-* \ddagger *tons?*

after recombination: γ travel freely at time *t* after: travel $d \sim ct$ A: γ s already past us B: γ s arriving C: γ s yet to come

at t, see sources at $d_{ls} \sim ct$ **surface of last scattering** "edge of observable universe" advances outward as universe ages! redshifts as the universe expands

The CMB is a Baby Picture

Thus:

- CMB = snapshot of U at recomb.!
- γ s last scattered at $t_{rec} \sim 400,000$ yr: ancient!
- came from $d_{\rm IS} \approx d_{\rm horizon} \sim ct_0 \sim$ "cosmic (particle) horizon"

the CMB is a cosmic baby picture

of the infant universe as $t = 400,000 \text{ yr} = 0.00003 t_0$