> Astro 210
> Lecture 4
> Sept. 4, 2013

Announcements:

- PS 1 available online and hard copies in class due at start of class this Friday, Sept 6 in question 1 and 2(b): assume Sun's mass $M_{\odot} \gg m_{\text {planet }}$ Typo in question 4(e): use an M6 star rather than M7
- Instructor office hours: today 1-2pm, or by appt

TA office hours: tomorrow (Thurs) 1-2pm

- iClicker GO app should work for this course
- ASTR 401: email me for appointment

Last time:
\triangleright apologies for technical difficulties!

- blackbody radiation

Q: what's a blackbody? what objects emit BB radiation?
Q : what sets surface flux from a $B B$?
Q : how is $B B$ color related to temperature?

Stars: Brightness

to naked eye, in clear sky:
about 6000 (!) stars visible over celestial sphere
\Rightarrow about 3000 at any one night
...but this is just the "tip of the iceberg"
directly measure flux
Q: for old time's sake, remind me-what is flux?
ex: Sun: $F_{\odot}=1370 \mathrm{~W} \mathrm{~m}^{-2}$
Sirius ("dog star")

$$
\frac{F_{\text {Sirius }}}{F_{\odot}}=7.6 \times 10^{-11}
$$

tiny, but had to be-we know stars are much dimmer than Sun

iClicker Poll: Getting Sirius

flux comparison: Sirius vs the Sun
$F_{\text {Sirius }} / F_{\odot}=7.6 \times 10^{-11}$

Does this mean that Sirius is less luminous than the Sun?

A yes
B no

C can't tell from this information alone

Luminosity

recall: apparent brightness \neq luminosity!

- luminosity $=$ power emitted from star: "wattage" units: energy/time, e.g., Watts
- flux $=$ power per unit area (at some observer location) units: power/area, e.g., Watts/m²
apparent brightness and luminosity related by

$$
\begin{equation*}
\text { observer-dependent } F=\frac{L}{4 \pi r^{2}} \frac{\text { observer-independent }}{\text { observer-dependent }} \tag{1}
\end{equation*}
$$

inverse square law!
farther \leftrightarrow dimmer
hence brightness is "apparent" - depends on observer but L is intrinsic fundamental property of a star
Q : how can we determine a star's L ?

To find \star luminosities

1. Measure flux F
sadly, usually expressed in magnitudes
see Director's Cut Extras bonus tracks below
2. Measure distance d
3. solve: $L=4 \pi d^{2} F$
ergo: to compare wattage of stars, need distances!

Distances to Stars

a difficult, longstanding (ongoing!) problem today many techniques exist but technology good enough in last 2 centuries

Parallax - the "gold standard" of stellar distances Demo: thumb's up-arm's length, halfway
as Earth orbits, our viewpoint shifts (slightly!)
\rightarrow nearby \star s appear to move w.r.t. background $\star s$
measure: angular shift p

Q: diagram is top view-what is sky view over 1 year?
Q : how are $1 \mathrm{AU}, d$, and angle p related?

Distances: Geometry and Units

trig technology: $d \tan p=1 \mathrm{AU}$
\Rightarrow distance $d=1 \mathrm{AU} / \tan p$
but p tiny! (≤ 1 arc sec $\sim 10^{-5}$ rad $\ll 1$)
$\rightarrow \tan p_{\text {rad }} \approx p_{\text {rad }}$, so
$d=1 \mathrm{AU} / p_{\mathrm{rad}}$, or

$$
\begin{equation*}
d=\frac{1 \mathrm{pc}}{p_{\text {arcsec }}} \tag{2}
\end{equation*}
$$

where $p_{\text {arcsec }}$ is p in arc sec
and $1 \mathrm{pc}=1 \mathrm{parsec}=1 \mathrm{AU} /(1 \mathrm{arcsec})_{\mathrm{rad}}=3.086 \times 10^{16} \mathrm{~m}$
\rightarrow distance to a star with $p=1$ arcsec
occasionally use light year $=$ distance light travels in 1 yr
${ }^{\infty} \mathrm{lyr}=c \times 1 \mathrm{yr}=9.5 \times 10^{15} \mathrm{~m}$
note: $1 \mathrm{pc}=3.26 \mathrm{lyr}$

Distances: Observations

typical parallactic shift is tiny (if observable at all!)
all less than 1 arcsec $=\frac{1}{3600}$ deg $=5 \times 10^{-6}$ radian!!
Sirius: $p=0.366$ arcsec
$d=\frac{1}{0.366} \mathrm{pc}=2.65 \mathrm{pc} \simeq 5 \times 10^{5} \mathrm{AU}$
nearest star: α Centauri system
three-star system at $1.3 \mathrm{pc}=4 \mathrm{lyr}$
note: even from nearest star, light takes 4 years to get here!
Lessons:

- 1 pc \sim typical distance between neighboring stars in our Galaxy (and others) www: 100 nearest stars
- parallax p tiny at best
\rightarrow measureable only for nearest stars
Q : what to do for more distant objects?

Star Color

Recall: color related to Temperature
Dr. Wien's amazing law says colder: redder; hotter: bluer www: objective prism spectra
very useful to quantify color!

- could try spectrum peak $\lambda_{\text {max }}$ - but often, absorption lines \rightarrow non-blackbody spectrum
- also: full spectrum from spectrometer "expensive"
\rightarrow have to collect more light since spread out

Q: what's a cheaper way to get color information from an image?
Note: imaging detectors are CCDs
$\stackrel{\rightharpoonup}{\circ} \rightarrow$ 'democratically" count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
\Rightarrow use filter which accepts light only in a range of wavelengths: "passband"
www: filter wheel
$F_{B} \rightarrow m_{B}=B:$ blue band, centered around $\lambda \approx 440 \mathrm{~nm}$
$F_{V} \rightarrow m_{V}=V$: "visual", yellowish, $\lambda \approx 550 \mathrm{~nm}$
response roughly similar to naked eye
...and many others
www: filter λ ranges
images in multiple filters \leftrightarrow crude spectrum

Star Luminosity

from star color \rightarrow surface temperature T
stellar luminosity depends on T
but also on star's radius R :
since surface flux $F=L /$ area $=\sigma T^{4}$

$$
\begin{equation*}
L=4 \pi R^{2} \sigma T^{4} \tag{3}
\end{equation*}
$$

so for fixed T (same color), $L \propto R^{2}$
\rightarrow bigger stars \rightarrow bigger emitting surface \rightarrow higher L

iClicker Poll: Star Temperature and Luminosity

Vote your conscience!
For large sample of stars, measure L and T for each
plot points on diagram of L vs T
What will the data show?
A random scatter: stars have large range of L, and of T, and in any combination

B tight clump of points: stars are nearly identical, all with very similar L and T

C a clear trend: stars have large range of L and of T but the two vary together (correlated)

D none of the above

A Stellar Census: Hertzsprung-Russell Diagram

Hertzsprung-Russell: plot L vsT for lotsa stars
really, abs mag M_{V} vs spectra type
but these are equivalent to L and T
www: H-R diagram

Q: what patterns do you notice?
Q : where are most stars?
Q: where is the Sun?
Q: how does the Sun compare to other stars?

Hertzsprung-Russell Diagram

for a "fair sample" of stars
(i.e., not a specially picked cluster)
trends emerge
most stars ($\sim 90 \%$) fall on curve: "main sequence"
(including the Sun!); "dwarfs"
most of the rest: cooler but more luminous: "giants"
Q: how do we know they are giant?
a rare few: hot but luminous: "supergiants"
not rare but dim and hard to find:
very hot but very low- L objects: "white dwarfs"
Q : how do we know they are teeny?

Q: what does the HR diagram tell us about the Sun?

H-R and the Sun

The Sun on H-R diagram:

- found on the main sequence
- position is in the middle of the curve
but the main sequence is where most stars are found!
thus: the Sun is a typical star!
- lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest

Other questions arise:

- why do stars lie on the main sequence?
- what controls their position on the diagram?

ん

- what's up with the giants, supergiants, and white dwarfs?
...stay tuned

Director's Cut Extras

Star Brightness: Magnitudes

star brightness measured in magnitude scale magnitude $=$ "rank" : smaller $m \rightarrow$ brighter Sorry.

Magnitudes use a logarithmic scale:

- difference of 5 mag is factor of 100 in flux:
$m_{2}-m_{1}=-2.5 \log _{10} F_{2} / F_{1} \quad$ (definition of mag scale!)
- mag units: dimensionless! (but usually say "mag") because mags are logs of ratio o f two dimensionful fluxes with physical units like W / m^{2}

What is mag difference $m_{2}-m_{1}$:
Q: if $F_{2}=F_{1}$?
Q: what is sign of difference if $F_{2}>F_{1}$?
Q: for equidistant light bulbs, $L_{1}=100 \mathrm{Watt}, L_{2}=50 \mathrm{Watt} ?$

Apparent Magnitude

a measure of star flux $=$ (apparent) brightness

- no distance needed
- arbitrary mag zero point set for convenience: historically: use bright star Vega: m(Vega) $\equiv 0$ then all other mags fixed by ratio to Vega flux
- ex: Sun has apparent magnitude $m_{\odot}=-26.74$

$$
\begin{aligned}
& \text { i.e., }-2.5 \log _{10}\left(F_{\odot} / F_{\mathrm{V} \text { ega }}\right)=-26.74 \\
& \text { so } F_{\text {Vega }}=10^{-26.74 / 2.5} F_{\odot}=2 \times 10^{-11} F_{\odot}
\end{aligned}
$$

- ex: Sirius has $m_{\text {Sirius }}=-1.45 \rightarrow$ brighter than Vega so: $F_{\text {Sirius }}=3.8 F_{\text {Vega }}=8 \times 10^{-11} F_{\odot}$
- ex: $m_{\text {Polaris }}=2.02$ Q: rank Polaris, Sirius, Vega?
* if distance to a star is known can also compute Absolute Magnitude
abs mag $M \equiv$ apparent mag if star placed at $d_{0}=10 \mathrm{pc}$

Q: what does this measure, effectively?

Absolute Magnitude

absolute magnitude $M=$ apparent mag at $d_{0}=10 \mathrm{pc}$
places all stars at constant fixed distance
\rightarrow a stellar "police lineup"
\rightarrow then differences in F only due to diff in L
\rightarrow absolute mag effectively measure luminosity

Sun: abs mag $M_{\odot}=4.76 \mathrm{mag}$
Sirius: $M_{\text {Sirius }}=+1.43 \mathrm{mag}$
Vega: $M_{\text {Vega }}=+0.58 \mathrm{mag}$
Polaris: $M_{\text {Polaris }}=-3.58 \mathrm{mag}$
ϵ Eridani: $M_{\epsilon \text { Eri }}=+6.19 \mathrm{mag}$ (nearest exoplanet host; $d=3.2 \mathrm{pc}$)
Q : rank them in order of descending L ?
N
Immediately see that Sun neither most nor least luminous star around

