Astro 406 Lecture 40 Dec. 6, 2013

Announcements:

- PS 12 due now and that's it
- pay it forward: do your ICES
- Final Exam Dec 20 (2 weeks from now) www: info online here, 8:00 to 11:00 am ...sorry!

ASTR 401: Comments back next week Paper in final form due **no later than Dec 20** *No extensions are possible!* 

Last time: left off with cosmic puzzles

• flatness

Q: what's the problem

## **Cosmic Puzzles: Flatness**

Today:  $0.9972 \leq \Omega_0 \leq 1.0038$  Planck 95% confidence range

But  $\Omega$  evolves:

$$|\Omega - 1| = \frac{c^2}{R_0^2 H^2 a^2} \tag{1}$$

at recombination:

 $0.9999998 \le \Omega_{\text{recomb}} \le 1.0000006$  (2)

at BBN:

N

If  $\Omega$  was out of these ranges then today would have  $\Omega_0 \ll 1$  or  $\Omega_0 \gg 1$ 

What set  $\Omega = 1$ ?

## **Cosmic Puzzles: Horizon**

particle horizon  $d_{hor}(t)$  is

- physical distance light travels in  $\boldsymbol{t}$
- $\bullet$  size of observable U. at t
- $\bullet$  max size of region in causal contact at t

but: when U is radiation dominated (and matter dom)  $d_{hor} \sim ct \rightarrow 0$  as  $t \rightarrow 0$ 

- $\Rightarrow$  as  $t \rightarrow 0$ , causal region vanishes
- $\rightarrow$  all points causally disconnected at t = 0!

Observe:

 $T_{\rm CMB}$  uniform to 1 part in 10<sup>5</sup>

but CMB photons on opposite sides of sky

come from regions that haven't communicated yet today, let alone at recombination!

ω

so  $d_{hor}(t_{rec}) =$  particle hor at recomb = size of region in causal contact corresponds to 1° patch on CMB sky  $\rightarrow$  regions > 1° apart on CMB sky couldn't "thermalize" to same T

www: CMB temperature map

Why is the CMB so isotropic?

## **Cosmic Puzzles: Lumpiness**

CMB is not perfectly isotropic: at high contrast, T fluctuations appear

www: Planck anisotropy map

CMB  $\Delta T \rightarrow \Delta \rho$  at recombination

What created fluctuations?

Note: these *puzzles* are **not** *inconsistencies* in big bang

*Q: solutions?* 

СЛ

## **Puzzle Solution I: Initial Conditions**

#### Assume the problem away:

Declare that U. started ashighly homogeneous, andhighly isotropic, but with

- tiny fluctuations present
- a "just-so" solution Possible but unsatisfying

- ▷ U. begins inhomogeneous
- ▷ w/ large fluctuations

but then how to get to today?

\* What's a generic universe??

## **Puzzle Solution II: Inflation**

```
Basic idea (Alan Guth, 1980):
in very early U., a period of:
exponential expansion
a(t) = a_i e^{H(t-t_i)}, with
• a_i scale fac at start of inflation
• H \approx \text{const}
if this lasted for a "long time"
i.e., H\Delta t \sim 60, or \Delta t \sim 60/H
```

"60 *e*-foldings" then U. expanded by factor  $_{\sim} e^{60} \simeq 10^{26}!$ 

## iClicker Poll: What does inflation do for us?

Imagine the very early U. suddenly expanded by a factor  $e^{60} \simeq 10^{26}$ 

## What will this do?

- A drive  $\Omega \rightarrow 1$ : solve flatness
- B solve horizon problem
- C solve flatness *and* horizon



## Inflation as the Cosmic Elixir

Inflation cures cosmic illnesses ...but how?

Imagine the early U. really suddenly expanded by a factor  $e^{60} \simeq 10^{26}$ ! microscopic  $\rightarrow$  macroscopic

*Q:* how does this cure horizon? flatness?

*Q:* how does this make fluctuations?

## **Inflation Solves Cosmic Puzzles**

#### flatness

cosmic curvature is length  $R(t) = R_0 a(t)$ but Friedmann:  $H^2 = 8\pi G\rho/3 - \kappa c^2/R^2$ use  $\Omega = \rho/\rho_{crit} = 8\pi G\rho/3H^2$  to solve for

$$\Omega(t) - 1 = \kappa \left[\frac{c/H(t)}{R(t)}\right]^2$$

(4)

if  $|\Omega - 1| \sim 1$  before inflation then after R increased by  $e^{60}$  $|\Omega - 1| \sim 10^{-50}$  after inflation  $\rightarrow$  curvature inflated away www: balloon analogy explains (*demands!*)  $\Omega = 1$  to high precision

### horizon

- $\triangleright$  tiny initial causal region (  $\ll 1$  Å : microscopic!)
- $\triangleright$  expanded to huge scales ( $\gg 1$  Mpc: macroscopic!)
- observable U. today (...and far beyond!)
- was in causal contact before inflation
- $\rightarrow$  was once thermalized
- $\rightarrow$  explains CMB isotropy

density fluctuations

pre-inflation: microscopic horizon  $\rightarrow$  quantum effects important quantum fluctuations present & *inevitable* like "zero-point energy":  $\Delta E \Delta t \gtrsim \hbar$ inflated to macroscopic scales  $\rightarrow$  cosmic structures due to quantum mechanics

How did the Universe get its spots? From the uncertainty principle!

"Inflation puts the 'bang' in the big bang." -Alan Guth

## **The Physics of Inflation**

Ingredients:

to fix cosmic puzzles, need:

phase of exponential expansion

(more generally, accelerated expansion)

 $\rightarrow$  like acceleration today due to dark energy

coincidence or deep connection??

exponential expansion  $\rightarrow$  U. must have a component with (energy) density  $\rho_{Vac} \approx const$ 

Inflation requires universe to have a negative pressure component

#### What is this component?

known particles/fields won't work (have tried!) invent new particle/field: the "inflaton"  $\phi$  $m_{\phi}c^2 \gtrsim 10^{16} \text{ GeV} \gg m_pc^2$ exists at high energy/early U. maybe part of unification of forces ("grand unification")?

## Inflation and the CMB

CMB shows:

U. nearly perfectly homogeneous and isotropic

on large scales

 $\rightarrow$  verifies flatness, isotropy

CMB shows:

tiny fluctuations exist by recomb

 $\rightarrow$  are these fantastically enlarged quantum fluctuations?!?

but wait-there's more!

fluctuations are *inevitable* in inflation but also: inflation very specific about fluctuation *spectrum* definite  $\langle (\delta \rho / \rho)^2 \rangle$  at different scales

#### CMB shows:

fluctuation pattern at > 1° scales matches inflation prediction woo hoo!

## **Future Tests of Inflation**

Prediction inflation → gravitational radiation "gravity wave CMB" leaves imprint regular CMB (via polarization pattern)

#### Not tested yet!

 and very very difficult to do
 → but now in reach of current CMB missions will begin to test
 Planck Surveyor: results to come?

## **Inflation Status**

## Inflation Scorecard: Fall Semester 2013

| Prediction    | Score     |
|---------------|-----------|
| flatness      | *         |
| isotropy      | *         |
| fluctuations  | * * * * * |
| gravity waves | DF*       |

\*Grade deferred till *Planck Surveyor* results

#### Pessimist's view

- most of these are really post-dictions
  - $\rightarrow$  inflation <code>invented</code> to solve these problems
- no fundamental (i.e., particle physics) understanding of inflaton  $\phi$
- no competing theory as an alternative a lack of imagination? a cosmic epicycle?

## **Optimist's view**

- fluctuations impressive, and a *pre*diction
- turn problem around:

CMB probes inflation  $\phi$ 

- $\Rightarrow$  the U. as the "poor man's accelerator"
- there *were* competing theories
- <sup>b</sup> ruled out by the data—and inflation wasn't

## Who's right?

- the data will show (esp. gravity waves)
- but still a good idea to try to develop competing ideas...

## Stay tuned!

# Structure Formation

## **Formation of Cosmic Structures**

basic idea:

"the rich get richer and the poor get poorer"

gravity amplifies density fluctuation "seeds"
 (e.g., from inflation)
 grow to structures we see today

Challenge: given  $\delta \rho$  + known cosmic ingredients can we understand how we got from recombination to today?

## Jeans (Gravitational) Instability

Sir James Jeans: *if region overdense: what does it do?* 

competition: outward expansion, pressure vs inward gravity → like hydrostatic equil

during radiation domination: expansion too fast perturbations barely grow structure formation stalled until...

## during matter domination ( $z \lesssim 3000$ ):

- perturbations can grow
- dark matter pressureless, begins collapse form potential wells for baryons
- baryons stil ionized, pressure too high
  ...until recomb., then begin collapse
  free fall until v > sound speed
  shock forms, gas slowed, heated: virialized