$$
\begin{gathered}
\text { Astro } 210 \\
\text { Lecture } 6 \\
\text { Sept. 9, } 2013
\end{gathered}
$$

Announcements:

- PS 2 due Friday
- ASTR 401: abstracts due next Monday

PS 1: many questions \& funny looks, about dimensional analysis a "quick and dirty" way to get rough, approximate answers
\rightarrow a way to estimate results
But: You've taken many courses and spent a lot of time learning complex and powerful tools for precise calculation Isn't estimation/dimensional analysis a step backwards? Maybe: Those who can't calculate, they approximate!

After all you've done to do things precisely
Q: why ever make rough, imprecise approximations?

Approximation is Real Science

the real world is subtle and rich (\equiv complicated) physics/astro phenomena elaborately detailed, but not all details equally important
no real-world system ever simple enough
to calculate without any approximation
and even if you could, complicated result hides insight
faced with a new problem: simplify!
...but keep the essentials
approximations and estimates help you

- to see what is relevant
- to see what is irrelevant
- to test ideas/hunches quickly
* identify which detailed calculation(s) are worth doing

Dimensional Analysis: The Estimator's Workhorse

physical quantities have dimensions (units)
all units can ultimately be expressed in terms of
three fundamental dimensions (units)
[length $] \equiv[L],[$ time $] \equiv[T]$, and $[$ mass $] \equiv[M]$
example: universal gravitation
force definition $F=G m_{1} m_{2} / r^{2} \Rightarrow[G]=\left[\begin{array}{ll}L^{3} & M^{-1}\end{array} T^{-2}\right]$
so: given only one mass scale m and lengthscale ℓ
the unique timescale satisfies $\tau^{2} \sim \ell^{3} / G M \sim 1 / G \rho$
\rightarrow applies to any problem with gravity only
Keplerian motion around Sun:
mass scale is $m=M_{\odot}$, lengthscale is $\ell=a$
\rightarrow estimate gravitational timescale of period $\tau^{2}=P^{2} \sim a^{3} / G M_{\odot}$
ω compare to honest calculation: period $P^{2}=4 \pi^{2} a^{3} / G M_{\odot}$ found guts of a law of Nature-Kepler III! but not $4 \pi^{2}$ factor...
more details below in Director's Cut Extras

Last time:
stellar evolution: main sequence
Q : what is the origin of the main sequence on the HR diagram?
Q: how does stellar lifetime depend on mass?
Q: what is the power source for main sequence stars?
Q : how do we know for sure?

Journey to the Center of the Sun: Solar Neutrinos

the Sun now is on the main sequence $=$ hydrogen burning
a variety of nuke reactions occur in solar core net effect: $4 p \rightarrow{ }^{4} \mathrm{He}+$ energy

First link: $p+p \rightarrow d=n \mathrm{np}+e^{+}+\nu$
d deuterium: Q : which is what kind of atom?
e^{+}positron: antimatter partner of e^{-}
opposite charge, same mass
ν neutrino: no charge, tiny mass ($m_{\nu} \ll m_{e}$)
very weakly interacting, only created in nuke transformations
neutrinos come directly from solar core \rightarrow detect on earth
www: SNO detector
www: Super-K image of Sun
$\checkmark \Rightarrow$ proof Sun powered by fusion!
Q: what happens when core of star is all He?

Post-MS Evolution: Death and Dying

depends on mass

Iow-mass: $m \lesssim 0.8 M_{\odot}$
$\tau(m)>t_{0}$ age of the universe
Q : what does this mean for these stars?
intermediate mass: $0.8 M_{\odot} \lesssim m \lesssim 8 M_{\odot}$
He core contracts, heats
H shell ignites, energy balance lost
outer layers expand, cool
red giant
He core ignites, burns $3^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}$, also oxygen diagram: He core, H shell, env
for $M \lesssim 1.5 M_{\odot}$, most energy release in giant phase
\rightarrow in old \star systems L dominated by giants
www: MW near-IR
www: elliptical galaxy
pulsations \rightarrow outer layers ejected planetary nebula
when core $\rightarrow \mathrm{C}+\mathrm{O}$, can't burn
\rightarrow white dwarf

Intermediate Mass Stars: Element Production

www: chemist's periodic table
nucleosynthesis: production and cycling of elements heavy elements $=$ all but H and $\mathrm{He}=$ "metals" $=Z$
(e.g., famous "metals" C, N, O)
astronomer's periodic table: $\mathrm{H}, \mathrm{He}, Z$
all heavy elements are created in stars
www: circle of life
intermediate mass stars: ${ }^{4} \mathrm{He}, \mathrm{C}$

High Masses: James Dean of Stars

high-mass: $m \gtrsim 8$ to $10 M_{\odot}$
after MS \rightarrow supergiant
www: Betelgeuse
cycles: core ash contracts \rightarrow heats \rightarrow ignites
ash \rightarrow fuel
"onion-skin" structure
when core \rightarrow iron
can't burn more (Fe fusion takes away E)
core collapse \rightarrow bounce
Demo: astro blaster!
$\bullet \Rightarrow$ supernova explosion
Q: where is star's material after explosion?
ejected material:
hot ($\gtrsim 10^{6} \mathrm{~K}$), fast $10,000 \mathrm{~km} / \mathrm{s}$ nucleosynthesis products: almost all metals
lots of O, Mg, Si, S, Fe
leftover ultradense core:
neutron star or black hole

Connection with galactic environment and evolution:
Q: do you expect SN from massive stars in elliptical galaxies?
Q : how about spirals?
www: $S N$ in galaxy
stars in ellipticals have higher metal content than in spirals
Q: what does this say about the past history?

GALAXIES: SWEET HOME MILKY WAY

iClicker Poll: Our Milky Way Galaxy

Milky Way to naked eye: irregular band of light www: MW mosaic

Vote your conscience!
What is the dominant naked-eye Milky Way light source?

A predominantly gas

B predominantly stars

C roughly equal mix

Milky Way: Overview and History

Galileo (1610): first telescope for astronomy revolutionized our view of the universe, e.g.

- Venus phases ruled out Earth-centered (geocentric) cosmology
- away from Milky Way discovered stars too faint for naked eye philosophical problem: what's the use of stars we can't see?
observing Milky Way's light:
Galileo saw it is made of stars
- huge numbers of stars
- very crowded on sky
- individually very faint
eye can't see MW stars individually, light blends together

MW band on 2-D sky is a great circle
$\stackrel{\rightharpoonup}{\omega}$
Q: what's that?
Q: what does this mean for MW in 3-D space?

Director's Cut Extras

Dimensional Analysis and Estimation

Profound but seemingly innocent observation I:
the behavior of a physical system is independent of the units used to describe it

Profound but seemingly innocent observation II:

```
in any expression (equation) describing a physical system
each term must have the same units
```

i.e., physical equations must be dimensionally homogeneous

Dimensional Analysis Illustrated

Consider

- a Newtonian particle in a uniform gravity field g
- released from rest, then after time t
- falls some height $h \leftarrow$ want to find this

You know the exact result, but imagine you don't
If we have fully characterized the problem
then it should be possible to write

$$
\begin{equation*}
h=f(g, t) \tag{1}
\end{equation*}
$$

where f is an arbitrary (for now) function
to solve the problem: specify f

- could use Newtonian mechanics, honest calculation takes work (integration), gives exact result
- but we can get far just by looking at dimensions

Q: what does dimensional homogeneity imply for $h=f(g, t)$?
what does dimensional homogeneity mean
for our relation $h=f(g, t)$?

- since $[h]=[L]$
then we must have $[f]=[L]$
- but also: if h is measured in meters, then f must be as well
- so if we change to h^{\prime} in yards, then
$h^{\prime}=\lambda h$, and in yards $f^{\prime}=\lambda f$,
where both expressions have the same conversion rescaling λ
so we have: $h=f(g, t)$ dimensionally homogeneous
rewrite: $h / f(g, t)=$ const $=1$
\Rightarrow holds regardless of the units used
we see $h / f(g, t)$ forms a dimensionless constant but our variables have:
- $[g]=\left[L T^{-2}\right]$
- $[t]=[T]$
given these dimensions, only one grouping of variables h, t, and g is dimensionless

Q: find this grouping!
Q: use this to find the most general form of $f(g, t)$!
we have $[f(g, t)]=[L]$
but the only way to form a length from g and t is the unique combination: $g t^{2}$
so the most general dimensionally legal expression is

$$
\begin{equation*}
f(g, t)=C g t^{2} \tag{2}
\end{equation*}
$$

with C a dimensionless constant Q : what's wrong with $C g t^{2}+\wedge$, or $C\left(g t^{2}\right)^{2} / \wedge$, with \wedge a constant?
and thus our dimensionless ratio can only be

$$
\begin{equation*}
\frac{h}{f(g, t)}=\frac{1}{C} \frac{h}{g t^{2}}=\text { const }=1 \tag{3}
\end{equation*}
$$

and so we can now solve

$$
\begin{equation*}
h=C g t^{2} \tag{4}
\end{equation*}
$$

Without calculus, but only considering dimensions, we find

$$
\begin{equation*}
h=C g t^{2} \tag{5}
\end{equation*}
$$

with C an undetermined dimensionless constant that is independent of units used for h, g, t

Q: what does this equation teach us?
Q: what does this not give us?
Q: how could you test this equation without knowing C ?
Q : if you didn't know C, what's a reasonable order-of-magnitude guess?
Q : how could you find C if you didn't know calculus?
Q : what is the actual value of C ?

Dimensional Analysis: Lessons

what has

$$
\begin{equation*}
h=C g t^{2} \tag{6}
\end{equation*}
$$

done for us?

- scaling relations $h \propto g$ and $h \propto t^{2}$
- don't know C : constant, so "invisible" to dim. analysis
- can test $h \propto t^{2}$ without knowing C measure fall time for different h, see if quadratic
- if you had to guess, would try $C \sim 1$
- without calculus, could get this experimentally: measure h vs t, find $C=h / g t^{2}$
- of course, freshman physics says $C=1 / 2$ order-of-magnitude guess off by factor 2 : not bad!

Dimensional Analysis: Twitter Version

What else could it be?

E.g.: the only length arising from g and t is $g t^{2}$ so we must have $h \sim g t^{2}$: what else could it be?

Lessons:

- gather all relevant variables
- find dimensionless grouping(s)
- use to solve for the result of interest
- shortcut: find combinations of variables with dimensions of the answer you want

